如图,△ABC中,AB=8,AC=6,点D在AC上且AD=2,如果要在AB上找一点E,使△ADE与△ABC相似,那么AE= .
问题提出
如图①,已知直线l与线段AB平行,试只用直尺作出AB的中点.
初步探索
如图②,在直线l的上方取一个点E,连接EA.EB,分别与l交于点M、N,连接MB.NA,交于点D,再连接ED并延长交AB于点C,则C就是线段AB 的中点.
推理验证
利用图形相似的知识,我们可以推理验证AC=CB.
(1)若线段A.B.C.d长度均不为0,则由下列比例式中,一定可以得出b=d的是
A. B. C. D.
(2)由MN∥AB,可以推出△EFN∽△ECB,△EMN∽△EAB,△MND∽△BAD,△FND∽△CAD.
所以,有,
所以,AC=CB.
拓展研究
如图③,△ABC中,D是BC的中点,点P在AB上.
(3)在图③中只用直尺作直线l∥BC.
(4)求证:l∥BC.
如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比等于( )
A. | B. | C. | D. |
兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.5米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( )
A.9.5米 | B.10.75米 | C.11.8米 | D.9.8米 |
如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则P到AB的距离是( )
A.m | B.m | C.m | D.m |
下列条件能判断△ABC与△DEF相似的有( )
(1)∠A=∠D,∠E=∠C;
(2);
(3)
(4);
(5)∠A=∠D,
A.2个 | B.3个 | C.4个 | D.5个 |
如图:为了测量某棵树的高度,小刚用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点,此时,竹竿与这一点距离6m,与树相距15m,那么这棵的高度为( )
A.5米 | B.7米 | C.7.5米 | D.21米 |
如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是 ( )
A. B. C. D.
下列说法中正确的是( )
A.两个直角三角形相似 | B.两个等腰三角形相似 |
C.两个等边三角形相似 | D.两个锐角三角形相似 |