如图,抛物线 经过 , 两点,交 轴于点 ,点 为抛物线的顶点,连接 ,点 为 的中点.请解答下列问题:
(1)求抛物线的解析式及顶点 的坐标;
(2)在 轴上找一点 ,使 的值最小,则 的最小值为 .
(注:抛物线 的对称轴是直线 ,顶点坐标为 ,
如图,直线 与双曲线 相交于 、B两点,在y轴上找一点P,当 的值最小时,点P的坐标为 .
如图,在矩形 中, , ,矩形内部有一动点 满足 ,则点 到 、 两点的距离之和 的最小值为 .
如图,菱形 ABCD的边长为2 cm,∠ A=120°,点 E是 BC边上的动点,点 P是对角线 BD上的动点,若使 PC+ PE的值最小,则这个最小值为 .
如图,等腰 的底边 ,面积为120,点 在边 上,且 , 是腰 的垂直平分线,若点 在 上运动,则 周长的最小值为 .
在平面直角坐标系内有两点 、 ,其坐标为 , ,点 为 轴上的一个动点,若要使 的值最大,则点 的坐标为 .
如图,在 中, , , ,以点 为圆心,2为半径的圆与 交于点 ,过点 作 交 于点 ,点 是边 上的动点.当 最小时, 的长为
A. B. C.1D.
如图, ,点 是 内的定点且 ,若点 、 分别是射线 、 上异于点 的动点,则 周长的最小值是
A. B. C.6D.3
如图,直线 与 轴、 轴分别交于点 和点 ,点 、 分别为线段 、 的中点,点 为 上一动点,当 最小时,点 的坐标为
A. B. C. , D. ,
如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( )
A.4B. C. D.
如图,在平面直角坐标系中,反比例函数 的图象与边长是6的正方形 的两边 , 分别相交于 , 两点. 的面积为10.若动点 在 轴上,则 的最小值是
A. B.10C. D.
如图,菱形 的边长为6, , 是 边的一个三等分点, 是对角线 上的动点,当 的值最小时, 的长是
A. B. C. D.
如图,已知直线,、之间的距离为8,点到直线的距离为6,点到直线的距离为4,,在直线上有一动点,直线上有一动点,满足,且最小,此时 .