如图所示,点 , , 对应的刻度分别为1,3,5,将线段 绕点 按顺时针方向旋转,当点 首次落在矩形 的边 上时,记为点 ,则此时线段 扫过的图形的面积为
A. |
|
B. |
6 |
C. |
|
D. |
|
如图, 为 的直径, 是 上一点,过点 的直线交 的延长线于点 , ,垂足为 , 是 与 的交点, 平分 .
(1)求证: 是 的切线;
(2)若 , ,求图中阴影部分的面积.
已知, 、 、 、 是反比例函数 图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是 (用含 的代数式表示).
如图, , , , 为 上一点, ,以 为圆心,以
为半径的圆与 相切于点 ,与 相交于点 ,连接 、 ,则图中阴影部分的面积是 .
如图,正方形 的边长为2, 为对角线的交点,点 , 分别为 , 的中点.以 为圆心,2为半径作圆弧 ,再分别以 , 为圆心,1为半径作圆弧 , ,则图中阴影部分的面积为
A. |
|
B. |
|
C. |
|
D. |
|
在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 ;③ 型尺 所在的直线垂直平分线段 .
(1)在图1中,请你画出用 形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点 , 之间的距离,就可求出环形花坛的面积.”如果测得 ,请你求出这个环形花坛的面积.
如图, 与 相切于点 , , 的直径为 , ,则阴影部分的面积为
A. B. C. D.
如图,在菱形 中,对角线 , ,分别以点 , , , 为圆心, 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为 .(结果保留
如图,已知在矩形 中, , ,点 是 边上的一个动点,连结 ,点 关于直线 的对称点为 ,当点 运动时,点 也随之运动.若点 从点 运动到点 ,则线段 扫过的区域的面积是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在边长为2的正方形 中, 是以 为直径的半圆的切线,则图中阴影部分的面积为
A. |
|
B. |
|
C. |
1 |
D. |
|
如图,在 中, 为 的中点,以 为圆心, 长为半径画弧交对角线 于点 ,若 , , ,则扇形 的面积为 .
用一个半径为3,面积为 的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为
A. B. C.2D.1