如图,用等分圆的方法,在半径为 的圆中,画出了如图所示的四叶幸运草,若 ,则四叶幸运草的周长是 .
如图,在 中, 为 的直径, 与 相切于点 ,与 相交于点 ,已知 , ,则 的长为 .
阅读理解:如图1, 与直线 、 都相切,不论 如何转动,直线 、 之间的距离始终保持不变(等于 的直径),我们把具有这一特性的图形称为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力就可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.
拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线 , 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线 , 之间的距离等于 ,则莱洛三角形的周长为 .
如图,在平面直角坐标系中,直线 的函数表达式为 ,点 的坐标为 ,以 为圆心, 为半径画圆,交直线 于点 ,交 轴正半轴于点 ,以 为圆心, 为半径画圆,交直线 于点 ,交 轴正半轴于点 ,以 为圆心, 为半径画圆,交直线 于点 ,交 轴正半轴于点 ; 按此做法进行下去,其中 的长为 .
如图,边长为1的正三角形 放置在边长为2的正方形内部,顶点 在正方形的一个顶点上,边 在正方形的一边上,将 绕点 顺时针旋转,当点 落在正方形的边上时,完成第1次无滑动滚动(如图 ;再将 绕点 顺时针旋转,当点 落在正方形的边上时,完成第2次无滑动滚动(如图 , ,每次旋转的角度都不大于 ,依次这样操作下去,当完成第2016次无滑动滚动时,点 经过的路径总长为 .
小明将量角器在桌面上进行连续翻转,如图为第1次、第2次翻转,若量角器的半径为1,则第2016次翻转后圆心 所走过的路径长为 .
如图,在 中,以 为直径的 与 相交于点 ,过点 作 的切线交 于点 .若 的半径为5, ,则 的长为 .
如图,在边长为1的小正方形网格中,将 绕某点旋转到△ 的位置,则点 运动的最短路径长为 .
如图,已知 为 的直径, 为半圆上异于 、 的一个动点, 的平分线与 交于点 ,若圆的半径为2时,则 的长度为 .
如图,已知 为 的直径, 为半圆上异于 、 的一个动点, 的平分线与 交于点 ,若圆的半径为2时,则 的长度为 .
如图1, 的直径 厘米,点 在 上,设 的度数为 (单位:度, ,优弧 的弧长与劣弧 的弧长的差设为 (单位:厘米),图2表示 与 的函数关系,则 度.