在平面直角坐标系O中,过原点O及点A(0,2) 、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D 点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动 设移动时间为t秒,当t为 时,△PQB为直角三角形。
如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标 .
如图,在边长为10的菱形ABCD中,对角线BD ="16." 点E是AB的中点,P、Q是BD上的动点,且始终保持PQ ="2." 则四边形AEPQ周长的最小值为_________.(结果保留根号)
如图在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上的一动点,连接EM并延长交CD的延长线于点F,G是线段BC上的一点,连接GE 、GF、GM .若△EGF是等腰直角三角形,=90°,则AB=
如图,正方形ABCD的边长为2,将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到点A为止,同时点F从点B出发,沿图中所示方向按B→C→D→A→B滑动到点B为止,那么在这个过程中,线段QF的中点M所经过的路线围成的图形的面积为 .
在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第1个正方形的面积为 ;第n个正方形的面积为 .
如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则sin∠APB值等于_____________
已知等腰梯形的上、下底分别为4cm、8cm,且其对角线互相垂直,那么它的面积为______;
如图,正方形A1B1B2C1,A2B2B3C2,A3B3B4C3,…,AnBnBn+1Cn,按如图所示放置,使点A1、A2、A3、…、An在射线OA上,点B1、B2、B3、…、Bn在射线OB上.若∠AOB=45°,OB1 =1,图中阴影部分三角形的面积由小到大依次记作S1,S2,S3,…,Sn,则Sn= .
如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边BC所在的直线与⊙O相切时,AB的长是 .
含60°角的菱形A1B1C1B2,A2B2 C2B3,A3B3C3B4,…,按如图的方式放置在平面直角坐标系xOy中,点A1,A2,A3,…,和点B1,B2,B3,B4,…,分别在直线y=kx和x轴上.已知B1(2,0),B2(4,0),则点A1的坐标是 ;点A3的坐标是 ;点An的坐标是 (n为正整数).
如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG= 度.
如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.
①四边形AO1BO2为菱形;
②点D的横坐标是点O2的横坐标的两倍;
③∠ADB=60°;
④△BCD的外接圆的圆心是线段O1O2的中点.
以上结论正确的是 .(写出所有正确结论的序号)