初中数学

(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;
(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求的值;
(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连接EG并延长交DC于点M,作MN⊥AB,垂足为N,MN交BD于点P,设正方形ABCD的边长为1.
(1)证明:四边形MPBG是平行四边形;
(2)设BE=x,四边形MNBG的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(3)如果按题设作出的四边形BGMP是菱形,求BE的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.
(1)若AB=4,求△DNF的周长及sin∠DAF的值;
(2)求证:2AD•NF=DE•DM.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.

(1)点F在边BC上.
①如图1,连接DE,AF,若DE⊥AF,求t的值;
②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?
(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

我们知道平行四边形有很多性质.
现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
【发现与证明】ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
结论1:B′D∥AC;
结论2:△AB′C与ABCD重叠部分的图形是等腰三角形.
……
请利用图1证明结论1或结论2(只需证明一个结论).
【应用与探究】在ABCD中,已知∠B=30°,将△ABC沿AC翻折至△AB′C,连结B′D.
(1)如图1,若,则∠ACB=       °,BC=       
(2)如图2,,BC=1,AB′与边CD相交于点E,求△AEC的面积;
(3)已知,当BC长为多少时,是△AB′D直角三角形?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题:
①如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB的中点,且∠DCE=45°,求DE的长;
②如图3,在△ABC中,∠BAC=45°,AD⊥BC,BD=2,CD=3,则△ABC的面积为 _________ (直接写出结果,不需要写出计算过程).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在正方形ABCD中,AB=4.
(1)正方形ABCD的周长为         

(2)如图1,点E、F分别在BC和AD上,点P是线段EF上的动点,过点P作EF的垂线L,若直线L与正方形CD、AB的交点分别在G、H.
①求证:EF=GH;
②已知,BE=2,AF=1,若线段PE的长度为a,求a的最小值;
③如图2,在②的条件下,已知AH=,PE=2PF,求图中阴影部分的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.

(1)如图1,求证:△AFB≌△ADC;
(2)请判断图1中四边形BCEF的形状,并说明理由;
(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D.

(1)求该二次函数的表达式;
(2)求证:四边形ACHD是正方形;
(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M的直线交二次函数的图象于另一点N.
①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;
②若△CMN的面积等于,请求出此时①中S的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在矩形ABCD中,AB=a,AD=b,点M为BC边上一动点(点M与点B、C不重合),连接AM,过点M作MN⊥AM,垂足为M,MN交CD或CD的延长线于点N.

(1)求证:△CMN∽△BAM;
(2)设BM=x,CN=y,求y关于x的函数解析式.当x取何值时,y有最大值,并求出y的最大值;
(3)当点M在BC上运动时,求使得下列两个条件都成立的b的取值范围:①点N始终在线段CD上,②点M在某一位置时,点N恰好与点D重合.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=6,BC=9,AC=8,点P在△ABC内部,过点P分别画AB、BC、CA的平行线,与各边分别相交得线段DE、FG、HK,已知线段DE、FG、HK的长度都为d,求d的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.

(1)求证:△ADP≌△ECP;
(2)若BP=n•PK,试求出n的值;
(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,直线 l : y = 3 4 x + b x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,点 C 是线段 OA 上一动点 ( 0 < AC < 16 5 ) .以点 A 为圆心, AC 长为半径作 A x 轴于另一点 D ,交线段 AB 于点 E ,连接 OE 并延长交 A 于点 F

(1)求直线 l 的函数表达式和 tan BAO 的值;

(2)如图2,连接 CE ,当 CE = EF 时,

①求证: ΔOCE ΔOEA

②求点 E 的坐标;

(3)当点 C 在线段 OA 上运动时,求 OE EF 的最大值.

来源:2018年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.

(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为,其中m,n为常数.

(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;
(2)利用(1)中的格点多边形确定m,n的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题