如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
A.1 | B. | C.4﹣2 | D.3﹣4 |
如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )
A.15°或30° | B.30°或45° | C.45°或60° | D.30°或60° |
如图,ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为( )
A.2 | B.4 | C.4 | D.8 |
下列命题中,真命题是( )
A.四边相等的四边形是正方形 |
B.对角线相等的菱形是正方形 |
C.正方形的两条对角线相等,但不互相垂直平分 |
D.矩形、菱形、正方形都具有“对角线相等”的性质 |
如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )
A.330° | B.315° | C.310° | D.320° |
如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:
①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH
其中,正确的结论有( )
A.1个 | B.2个 | C.3个 | D.4个 |
我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )
A.a2-b2=(a+b)(a-b) |
B.(a-b)(a+2b)=a2+ab-b2 |
C.(a-b)2=a2-2ab+b2 |
D.(a+b)2=a2+2ab+b2 |
如图,以数轴的单位长度为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是( )
A.1 | B.1.4 | C. | D. |
如图 ,在矩形ABCD中 ,AB="10" , BC="5" .若点M、N分别是线段ACAB上的两个动点 ,则BM+MN的最小值为 ( )
A.10 | B.8 | C.5 | D.6 |
如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,若AB=3,BC=4,那么阴影部分的面积为( )
A.4 | B.12 | C.6 | D.3 |
将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为( )
A cm2 B cm2 Ccm2 D()ncm2
如图 ,在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD,则PE+PF的值为 ( )
A. | B. | C.2 | D. |