探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB 与AD重合,由旋转可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2, ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法迁移:
如图②,将 沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF= ∠DAB.试猜想DE,BF,EF之间有何数量 关系,并证明你的猜想.
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足 ,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
如图,BD是□ABCD的对角线,∠ABD的平分线
BE交AD于点E,∠CDB的平分线 DF交BC于点F.
求证:△ABE≌△CDF.
如图,直角梯形纸片ABCD中,AD//BC,∠A=90º,∠C=30º.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数;
(2)求AB的长.
已知:如图,在四边形ABCD中, AD=BC,∠A、∠B均为锐角.
当∠A=∠B时,则CD与A B的位置关系是CD AB,大小关系是CD AB;
当∠A>∠B时,(1)中C D与A B的大小关系是否还成立,证明你的结论.
已知:如图,在直角梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,上底AD = 8,AB=12,CD边的垂直平分线交BC边于点G,且交AB的延长线于点E,求AE的长.
如图,等腰梯形ABCD中,AB = CD,AD∥BC.
(1)求证:△AOB≌△DOC;
(2)若AD = 4,BC = 8,,
①求梯形ABCD的面积;
②若E为AB中点,F为OC的中点,求EF的长.
如图所示,正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于H.
求证:△BCG≌△DCE;
(1)求证:BH⊥DE;
(2)试问当CG等于多少时,BH垂直平分DE?
如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点D处,点A落在点处,连结BE.
求证:四边形是菱形;
若AB =" 4" cm,BC =" 8" cm,求折痕EF的长.
如图,△ABC中,AB = AC,AD、AE分别是∠BAC和∠BAC外角的平分线,.
(1)求证:DA⊥AE;
(2)试判断AB与DE是否相等?并证明你的结论.
如图,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东45°方向上.
(1)求出A,B两村之间的距离;
(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置(不写作法,保留清晰的作图痕迹).
已知,如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)∠若B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.
有一水库大坝的横截面是梯形ABCD,AD∥BC,EF为水库的水面,点E在DC上,某课题小组在老师带领下想测量水的深度,他们测得背水坡AB的长为12米,迎水坡DE的长为2米,∠BAD=135°,∠ADC=120°,求水深.(精确到0.1米,)
如图,在△ABC中,∠CAB、∠ABC的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.求证:四边形DECF为菱形.