初中数学

课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.

(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.

请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知正方形ABCD的边长为1,以顶点A、B为圆心,1为半径的两弧交于点E,以顶点C、D为圆心,1为半径的两弧交于点F,则EF的长为   ▲  

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.

(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,矩形中,,,的垂直平分线分别交于点,垂足为.
(1)如图1,连接.求证四边形为菱形,并求的长;
(2)如图2,动点分别从两点同时出发,沿各边匀速运动一周.即点停止,点停止.在运动过程中,已知点的速度为每秒5,点的速度为每秒4,运动时间为秒,当四点为顶点的四边形是平行四边形时,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,矩形纸片ABCD中,AB=6cm,BC=10cm,点E在AB边上,将△EBC沿EC所在直线折叠,使点B落在AD边上的点B′处,则AE的长为           cm.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图①在梯形ABCD中,AD∥BC。AB=DC
(1)如果点P,E和F分别是BC,AC和BD的中点,证明:AB=PE+PF
(2)如果点P是线段BC上任意一点(中点除外),PE∥AB,PF∥DC,如图②所示,那么AB=PE+PF这个结论还成立吗?请说明理由
(3)如果点P在线段BC的延长线上, PE∥AB,PF∥DC,其他条件不变,那么结论AB=PE+PF是否成立?直接写出结论,不必证明。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,丹东防汛指挥部发现鸭绿江边一处长500米高10米背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固,经调查论证,防洪指挥部专家组指定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:
(1)求加固后坝底增加的宽度AF
(2)求完成这项工程需要土石多少立方米?(结果保留根号)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,将一张矩形纸片沿EF折叠,使点落在 边上的点B处;沿BG折叠,使点落在点D处,且BD过F点.
试判断四边形BEFG的形状,并证明你的结论.
当∠BFE为多少度时,四边形BEFG是菱形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,以菱形ABCD各边的中点为顶点作四边形A1B1C1D1,再以A1B1C1D1各边的中点为顶点作四边形,……,如此下去,得到四边形,若ABCD对角线长分别为a和b,请用含a、b的代数式表示四边形的周长   

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使得△AMN周长最小时,则∠AMN+∠ANM的度数为(    )
A.100°        B.110°       C.120°       D.130°
              

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

由四个全等的直角三角形围成的一个大正方形,中间的阴影部分是一个小正方形的“赵爽弦图”.若这四个全等的直角三角形有一个角为30°,顶点B1B2B3,…,BnC1C2C3,…,Cn分别在直线x轴上,则第一个阴影正方形的面积为    ▲    ,第n个阴影正方形的面积为    ▲    .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图 ,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为( ).

A.3 B.4 C.5 D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图(1),在平行四边形ABCD中,对角线CA⊥BA,AB=AC=8cm,四边形A1B1C1D1是平行四边形ABCD绕点A按逆时针方向旋转45°得到的,A1D1经过点C,B1C1分别与AB、BC相交于点P、Q.
(1)求四边形CD1C1Q的周长;(保留无理数,下同)
(2)求两个平行四边形重合部分的四边形APQC的面积S;
(3)如图(2),将平行四边形A1B1C1D1以每秒1cm的速度向右匀速运动,当运动到B1C1在直线AC上时停止运动.设运动的时间为x(秒),两个平行四边形重合部分的面积为y(cm2).求y关于x的函数关系式,并探索是否存在一个时刻x,使得y取最大值,若存在,请你求出这个最大值;若不存在,请你说明理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在梯形中,,,上一点,.
求证:
,试判断四边形的形状,并说明理由.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆试题