如图1,在等腰三角形 ABC 中, ∠ A = 120 ° , AB = AC ,点 D 、 E 分别在边 AB 、 AC 上, AD = AE ,连接 BE ,点 M 、 N 、 P 分别为 DE 、 BE 、 BC 的中点.
(1)观察猜想.
图1中,线段 NM 、 NP 的数量关系是 , ∠ MNP 的大小为 .
(2)探究证明
把 ΔADE 绕点 A 顺时针方向旋转到如图2所示的位置,连接 MP 、 BD 、 CE ,判断 ΔMNP 的形状,并说明理由;
(3)拓展延伸
把 ΔADE 绕点 A 在平面内自由旋转,若 AD = 1 , AB = 3 ,请求出 ΔMNP 面积的最大值.