如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC = 8 , BC = 6 ,点 P 是平面内一个动点,且 AP = 3 , Q 为 BP 的中点,在 P 点运动过程中,设线段 CQ 的长度为 m ,则 m 的取值范围是 .
(1)如图①,点是外一点,点是上一动点.若的半径为3,且,则点到点的最短距离为 ;
(2)如图②,已知正方形的边长为4,点、分别从点、同时出发,以相同的速度沿边、方向向终点和运动,连接和交于点,则点到点的最短距离为 ;
(3)如图③,在等边中,,点、分别从点、同时出发,以相同的速度沿边、方向向终点和运动,连接和交于点,求面积的最大值,并说明理由.
问题提出
(1)如图①,在 ΔABC 中, BC = 6 , D 为 BC 上一点, AD = 4 ,则 ΔABC 面积的最大值是 .
问题探究
(2)如图②,已知矩形 ABCD 的周长为12,求矩形 ABCD 面积的最大值.
问题解决
(3)如图③, ΔABC 是葛叔叔家的菜地示意图,其中 AB = 30 米, BC = 40 米, AC = 50 米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形 ABCD ,且满足 ∠ ADC = 60 ° .你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.