如图, 经过平面直角坐标系的原点 ,交 轴于点 ,交 轴于点 ,点 为第二象限内圆上一点.则 的正弦值是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在菱形 中, ,点 , 分别在边 , 上, , 的周长为 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中,点 , 分别是边 , 的中点,点 是线段 上的一点.连接 , , ,且 , ,则 的长是
A. |
2 |
B. |
3 |
C. |
4 |
D. |
5 |
如图,直线 ,点 是直线 上一点,点 是直线 外一点,若 , ,则 的度数是
A. B. C. D.
已知如图,在正方形 中, , , 分别是 , 上的一点,且 , ,将 绕点 沿顺时针方向旋转 后与 重合,连接 ,过点 作 ,交 于点 ,则以下结论:① ,② ,③ ,④ 中正确的是
A.①②③B.②③④C.①③④D.①②④
如图,把含 的直角三角板 放置在正方形 中, ,直角顶点 在正方形 的对角线 上,点 , 分别在 和 边上, 与 交于点 ,且点 为 的中点,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 , , , 共线, , ,添加一个条件,不能判断 的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 纸片中, , , ,点 , 分别在 , 上,连结 ,将 沿 翻折,使点 的对应点 落在 的延长线上,若 平分 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形 组成,恰好拼成一个大正方形 .连结 并延长交 于点 .若 , ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 中,点 在 上,将矩形沿 折叠,使点 落在 边上的点 处.若 , ,则 的值为
A. B. C. D.
如图,等边三角形 边长是定值,点 是它的外心,过点 任意作一条直线分别交 , 于点 , .将 沿直线 折叠,得到△ ,若 , 分别交 于点 , ,连接 , ,则下列判断错误的是
A.
B.△ 的周长是一个定值
C.四边形 的面积是一个定值
D.四边形 的面积是一个定值
如图,等腰 中,点 , 分别在腰 , 上,添加下列条件,不能判定 的是
A. B. C. D.