初中数学

如图,在平面直角坐标系中,二次函数 y = - 1 4 x 2 + bx + c 的图象与坐标轴交于 A B C 三点,其中点 A 的坐标为 ( 0 , 8 ) ,点 B 的坐标为 ( - 4 , 0 )

(1)求该二次函数的表达式及点 C 的坐标;

(2)点 D 的坐标为 ( 0 , 4 ) ,点 F 为该二次函数在第一象限内图象上的动点,连接 CD CF ,以 CD CF 为邻边作平行四边形 CDEF ,设平行四边形 CDEF 的面积为 S

①求 S 的最大值;

②在点 F 的运动过程中,当点 E 落在该二次函数图象上时,请直接写出此时 S 的值.

来源:2016年江苏省淮安市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,一次函数 y = x 与二次函数 y = x 2 + bx 的图象相交于 O A 两点,点 A ( 3 , 3 ) ,点 M 为抛物线的顶点.

(1)求二次函数的表达式;

(2)长度为 2 2 的线段 PQ 在线段 OA (不包括端点)上滑动,分别过点 P Q x 轴的垂线交抛物线于点 P 1 Q 1 ,求四边形 PQ Q 1 P 1 面积的最大值;

(3)直线 OA 上是否存在点 E ,使得点 E 关于直线 MA 的对称点 F 满足 S ΔAOF = S ΔAOM ?若存在,求出点 E 的坐标;若不存在,请说明理由.

来源:2016年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + c ( a 0 ) 的图象与 x 轴交于 A ( 1 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ,直线 y = - 1 2 x + 2 经过 B C 两点.

(1)直接写出二次函数的解析式   y = 1 2 x 2 - 5 2 x + 2  

(2)平移直线 BC ,当直线 BC 与抛物线有唯一公共点 Q 时,求此时点 Q 的坐标;

(3)过(2)中的点 Q QE / / y 轴,交 x 轴于点 E .若点 M 是抛物线上一个动点,点 N x 轴上一个动点,是否存在以 E M N 三点为顶点的直角三角形(其中 M 为直角顶点)与 ΔBOC 相似?如果存在,请直接写出满足条件的点 M 的个数和其中一个符合条件的点 M 的坐标;如果不存在,请说明理由.

来源:2020年内蒙古赤峰市中考数学试卷
  • 更新:2021-01-25
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题计算题