在平面直角坐标系 中, 的直角顶点 在 轴上,点 的坐标为 ,将 沿直线 翻折,得到 △ ,过 作 垂直于 交 轴于点 ,则点 的坐标为
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 是反比例函数 图象上一点,过点 分别向坐标轴作垂线,垂足为 , .反比例函数 的图象经过 的中点 ,与 , 分别相交于点 , .连接 并延长交 轴于点 ,点 与点 关于点 对称,连接 , .
(1)填空: ;
(2)求 的面积;
(3)求证:四边形 为平行四边形.
如图,在平面直角坐标系中,点 、 、 在 轴上, 、 、 在直线 上,若 ,且△ 、△ △ 都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为 、 、 .则 可表示为
A. |
|
B. |
|
C. |
|
D. |
|
若正比例函数 的图象经过第二、四象限,且过点 和 ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
1 |
已知正比例函数 的图象与反比例函数 的图象相交于点 ,下列说法正确的是
A. |
反比例函数 的解析式是 |
B. |
两个函数图象的另一交点坐标为 |
C. |
当 或 时, |
D. |
正比例函数 与反比例函数 都随 的增大而增大 |
有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数 与 的图象性质.
小明根据学习函数的经验,对函数 与 ,当 时的图象性质进行了探究.
下面是小明的探究过程:
(1)如图所示,设函数 与 图象的交点为 , ,已知 点的坐标为 ,则 点的坐标为 ;
(2)若点 为第一象限内双曲线上不同于点 的任意一点.
①设直线 交 轴于点 ,直线 交 轴于点 .求证: .
证明过程如下:设 ,直线 的解析式为 .
则 ,
解得
直线 的解析式为
请你把上面的解答过程补充完整,并完成剩余的证明.
②当 点坐标为 , 时,判断 的形状,并用 表示出 的面积.