已知:正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.
已知二次函数 y = a x 2 + bx + c ( a > 0 )
(1)若 a = 1 , b = - 2 , c = - 1
①求该二次函数图象的顶点坐标;
②定义:对于二次函数 y = p x 2 + qx + r ( p ≠ 0 ) ,满足方程 y = x 的 x 的值叫做该二次函数的"不动点".求证:二次函数 y = a x 2 + bx + c 有两个不同的"不动点".
(2)设 b = 1 2 c 3 ,如图所示,在平面直角坐标系 Oxy 中,二次函数 y = a x 2 + bx + c 的图象与 x 轴分别相交于不同的两点 A ( x 1 , 0 ) , B ( x 2 , 0 ) ,其中 x 1 < 0 , x 2 > 0 ,与 y 轴相交于点 C ,连结 BC ,点 D 在 y 轴的正半轴上,且 OC = OD ,又点 E 的坐标为 ( 1 , 0 ) ,过点 D 作垂直于 y 轴的直线与直线 CE 相交于点 F ,满足 ∠ AFC = ∠ ABC . FA 的延长线与 BC 的延长线相交于点 P ,若 PC PA = 5 5 a 2 + 1 ,求二次函数的表达式.
四边形 ABCD 是 ⊙ O 的圆内接四边形,线段 AB 是 ⊙ O 的直径,连结 AC 、 BD .点 H 是线段 BD 上的一点,连结 AH 、 CH ,且 ∠ ACH = ∠ CBD , AD = CH , BA 的延长线与 CD 的延长线相交于点 P .
(1)求证:四边形 ADCH 是平行四边形;
(2)若 AC = BC , PB = 5 PD , AB + CD = 2 ( 5 + 1 )
①求证: ΔDHC 为等腰直角三角形;
②求 CH 的长度.
如图所示,在平面直角坐标系 Oxy 中,等腰 ΔOAB 的边 OB 与反比例函数 y = m x ( m > 0 ) 的图象相交于点 C ,其中 OB = AB ,点 A 在 x 轴的正半轴上,点 B 的坐标为 ( 2 , 4 ) ,过点 C 作 CH ⊥ x 轴于点 H .
(1)已知一次函数的图象过点 O , B ,求该一次函数的表达式;
(2)若点 P 是线段 AB 上的一点,满足 OC = 3 AP ,过点 P 作 PQ ⊥ x 轴于点 Q ,连结 OP ,记 ΔOPQ 的面积为 S ΔOPQ ,设 AQ = t , T = O H 2 - S ΔOPQ
①用 t 表示 T (不需要写出 t 的取值范围);
②当 T 取最小值时,求 m 的值.
如图所示,已知正方形 OEFG 的顶点 O 为正方形 ABCD 对角线 AC 、 BD 的交点,连接 CE 、 DG .
(1)求证: ΔDOG ≅ ΔCOE ;
(2)若 DG ⊥ BD ,正方形 ABCD 的边长为2,线段 AD 与线段 OG 相交于点 M , AM = 1 2 ,求正方形 OEFG 的边长.
某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温 T 有关,现将去年六月份(按30天计算)的有关情况统计如下:
(最高气温与需求量统计表)
最高气温 T (单位: ° C )
需求量(单位:杯)
T < 25
200
25 ⩽ T < 30
250
T ⩾ 30
400
(1)求去年六月份最高气温不低于 30 ° C 的天数;
(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;
(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温 T 满足 25 ⩽ T < 30 (单位: ° C ) ,试估计这一天销售这种鲜奶所获得的利润为多少元?