一个不透明的袋子中装有四个小球,上面分别标有数字,,0,1,它们除了数字不同外,其它完全相同.
(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是 .
(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点的纵坐标.如图,已知四边形的四个顶点的坐标分别为,,,,请用画树状图或列表法,求点落在四边形所围成的部分内(含边界)的概率.
如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为,表示桃园路的点的坐标为,则表示太原火车站的点(正好在网格点上)的坐标是 .
如图所示,小球从台球桌面 上的点 出发,撞击桌边发生反弹,反射角等于入射角若小球以每秒 个单位长度的速度沿图中箭头方向运动,则第50秒的小球所在位置的坐标为
A. |
|
B. |
|
C. |
|
D. |
|
如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为 轴、 轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 ;
②当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 ;
③当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 ;
④当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 .
上述结论中,所有正确结论的序号是
A. |
①②③ |
B. |
②③④ |
C. |
①④ |
D. |
①②③④ |
如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。如果从A到B记为:A→B(+1,+3);从C到D记为:C→D(+1,-2)。其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A→C( , ),C→(-2, );
(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;
(3)假如这只甲虫从A处去甲虫P处的行走路线依次为
(+2,+2),(+1,-1),(-2,+3),请在图中标出P的位置.
将正整数从1开始,按如图所表示的规律排列.规定图中第m行、第n列的位置记作(m,n),如正整数8的位置是(2,3),则正整数137的位置记作 .
(年江西省南昌市)如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标;
(2)写出顶点B,C,B1,C1的坐标.
初三年级某班有54名学生,所在教室有6行9列座位,用表示第行第列的座位,新学期准备调整座位,设某个学生原来的座位为,如果调整后的座位为,则称该生作了平移,并称为该生的位置数。若当时,取得最小值,则该生位置数的最大值为 。
如图,在平面直角坐标系中, 的边 在 轴上, ,且线段 的长是方程 的根,过点 作 轴,垂足为 , ,动点 以每秒1个单位长度的速度,从点 出发,沿线段 向点 运动,到达点 停止.过点 作 轴的垂线,垂足为 ,以 为边作正方形 ,点 在线段 上,设正方形 与 重叠部分的面积为 ,点 的运动时间为 秒.
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量 的取值范围;
(3)当点 落在线段 上时,坐标平面内是否存在一点 ,使以 、 、 、 为顶点的四边形是平行四边形?若存在,直接写出点 的坐标;若不存在,请说明理由.