如图是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为( )
A.(C,5) B.(C,4) C.(4,C) D.(5,C)
下图是轰炸机群一个飞行队形,如果最后两架轰炸机的平面坐标分别是A(-2,1)和B(-2,-3),那么第一架轰炸机C的平面坐标是 .
如图是一片枫叶标本,其形状呈"掌状五裂型",裂片具有少数突出的齿,将其放在平面直角坐标系中,表示叶片"顶部" , 两点的坐标分别为 , ,则叶杆"底部"点 的坐标为 .
如图是学校与小明家位置示意图,如果以学校所在位置为坐标原点,水平方向为x轴建立直角坐标系,那么小明家所在位置的坐标为__________.
定义:在平面直角坐标系 中,把从点 出发沿纵或横方向到达点 (至多拐一次弯)的路径长称为 , 的“实际距离”.如图,若 , ,则 , 的“实际距离”为5,即 或 .环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设 , , 三个小区的坐标分别为 , , ,若点 表示单车停放点,且满足 到 , , 的“实际距离”相等,则点 的坐标为 .
小明为画一个零件的轴截面,以该轴截面底边所在的直线为 轴,对称轴为 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取 ,则图中转折点 的坐标表示正确的是
A. B. C. D.
在下面的网格中,每个小正方形的边长均为1, 的三个顶点都是网格线的交点,已知 , 两点的坐标分别为 , .
(1)请在图中画出平面直角坐标系,并直接写出点 的坐标.
(2)将 绕着坐标原点顺时针旋转 ,画出旋转后的△ .
(3)接写出在上述旋转过程中,点 所经过的路径长.
如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是 和 ,那么“卒”的坐标为 .
以水平数轴的原点为圆心,过正半轴上的每一刻度点画同心圆,将逆时针依次旋转、、、、得到11条射线,构成如图所示的“圆”坐标系,点、的坐标分别表示为、,则点的坐标表示为 .
小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小
王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是
A. |
小李现在位置为第1排第2列 |
B. |
小张现在位置为第3排第2列 |
C. |
小王现在位置为第2排第2列 |
D. |
小谢现在位置为第4排第2列 |
一个不透明的袋子中装有四个小球,上面分别标有数字,,0,1,它们除了数字不同外,其它完全相同.
(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是 .
(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点的纵坐标.如图,已知四边形的四个顶点的坐标分别为,,,,请用画树状图或列表法,求点落在四边形所围成的部分内(含边界)的概率.
如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为 轴、 轴的正方向建立平面直角坐标系,有如下四个结论:
①当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 ;
②当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 ;
③当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 ;
④当表示天安门的点的坐标为 ,表示广安门的点的坐标为 时,表示左安门的点的坐标为 .
上述结论中,所有正确结论的序号是
A. |
①②③ |
B. |
②③④ |
C. |
①④ |
D. |
①②③④ |