初中数学

观察下列等式:

第一个等式:

第二个等式:

第三个等式:

第四个等式:

按上述规律,回答下列问题:

(1)请写出第六个等式:    

(2)用含的代数式表示第个等式:    

(3)  (得出最简结果);

(4)计算:

来源:2017年四川省内江市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:

例:将 0 . 7 ̇ 化为分数形式

由于 0 . 7 ̇ = 0 . 777 ,设 x = 0 . 777

10 x = 7 . 777

- ①得 9 x = 7 ,解得 x = 7 9 ,于是得 0 . 7 ̇ = 7 9

同理可得 0 . 3 ̇ = 3 9 = 1 3 1 . 4 ̇ = 1 + 0 . 4 ̇ = 1 + 4 9 = 13 9

根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)

(基础训练)

(1) 0 . 5 ̇ =        5 . 8 ̇ =        

(2)将 0 . 2 ̇ 3 ̇ 化为分数形式,写出推导过程;

(能力提升)

(3) 0 . 3 ̇ 1 5 ̇ =        2 . 0 1 ̇ 8 ̇ =       

(注 : 0 . 3 ̇ 1 5 ̇ = 0 . 315315 2 . 0 1 ̇ 8 ̇ = 2 . 01818 )

(探索发现)

(4)①试比较 0 . 9 ̇ 与1的大小: 0 . 9 ̇       1(填“ > ”、“ < ”或“ = )

②若已知 0 . 2 ̇ 8571 4 ̇ = 2 7 ,则 3 . 7 ̇ 1428 5 ̇ =        

(注 : 0 . 2 ̇ 8571 4 ̇ = 0 . 285714285714 )

来源:2018年湖北省随州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

有一列按一定顺序和规律排列的数:

第一个数是 1 1 × 2

第二个数是 1 2 × 3

第三个数是 1 3 × 4

对任何正整数 n ,第 n 个数与第 ( n + 1 ) 个数的和等于 2 n × ( n + 2 )

(1)经过探究,我们发现: 1 1 × 2 = 1 1 - 1 2 1 2 × 3 = 1 2 - 1 3 1 3 × 4 = 1 3 - 1 4

设这列数的第5个数为 a ,那么 a > 1 5 - 1 6 a = 1 5 - 1 6 a < 1 5 - 1 6 ,哪个正确?

请你直接写出正确的结论;

(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第 n 个数(即用正整数 n 表示第 n 数),并且证明你的猜想满足"第 n 个数与第 ( n + 1 ) 个数的和等于 2 n × ( n + 2 ) ";

(3)设 M 表示 1 1 2 1 2 2 1 3 2 1 2016 2 ,这2016个数的和,即 M = 1 1 2 + 1 2 2 + 1 3 2 + 1 2016 2

求证: 2016 2017 < M < 4031 2016

来源:2016年云南省中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

将连续的偶数2,4,6,8,10……排成如下的数表.

(1)十字框的五个数的和与中间的数26有什么关系?
(2)设中间的数为m,用代数式表示十字框中的五个数之和;
(3)十字框中的五个数之和能等于2 060吗?若能,请写出这五个数;若不能,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学规律型:数字的变化类计算题