首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 计算题
  • 难度 较难
  • 浏览 112

有一列按一定顺序和规律排列的数:

第一个数是 1 1 × 2

第二个数是 1 2 × 3

第三个数是 1 3 × 4

对任何正整数 n ,第 n 个数与第 ( n + 1 ) 个数的和等于 2 n × ( n + 2 )

(1)经过探究,我们发现: 1 1 × 2 = 1 1 - 1 2 1 2 × 3 = 1 2 - 1 3 1 3 × 4 = 1 3 - 1 4

设这列数的第5个数为 a ,那么 a > 1 5 - 1 6 a = 1 5 - 1 6 a < 1 5 - 1 6 ,哪个正确?

请你直接写出正确的结论;

(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第 n 个数(即用正整数 n 表示第 n 数),并且证明你的猜想满足"第 n 个数与第 ( n + 1 ) 个数的和等于 2 n × ( n + 2 ) ";

(3)设 M 表示 1 1 2 1 2 2 1 3 2 1 2016 2 ,这2016个数的和,即 M = 1 1 2 + 1 2 2 + 1 3 2 + 1 2016 2

求证: 2016 2017 < M < 4031 2016

登录免费查看答案和解析

有一列按一定顺序和规律排列的数:第一个数是11×2;第二个数