初中数学

某织布厂有工人200名,为改善经营,增设制衣项目,已知每人每天能织布30米,或利用所织布制衣4件,制衣一件用布1.5米,将布直接出售,每米布可获利2元;将布制成衣后出售,每件可获利25元,若每名工人一天只能做一项工作,且不计其他因素,设安排x名工人制衣,那么:
(1)一天中制衣所获得的利润为P=___________________(试用含x的代数式表示并化简);
(2)一天中剩余布出售所获利润为Q=________________(试用含x的代数式表示并化简);
(3)当安排166名工人制衣时,所获总利润是多少元?能否安排167名工人制衣以提高利润? 试说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)当有n张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“囧”(jiǒng)曾经是一个风靡网络的流行词,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.

(1)用含有x、y的代数式表示右图中“囧”(阴影部分)的面积;
(2)当x=2y=8时,求此时“囧”的面积;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

从2004年8月1日起,浙江省城乡居民生活用电执行新的电价政策,小聪家今年安装了新的电表,他了解到安装”一户一表”的居民用户,按用抄见电量(每家用户电表所表示的用电量)实行阶梯式累进加价,其中低于50千瓦时(含50千瓦时)部分电价不调整;51﹣200千瓦时部分每千瓦时电价上调0.03元;超过200千瓦时的部分每千瓦时电价再上调0.10元.已知调整前电价统一为每千瓦时0.53元.
(1)若小聪家10月份的用电量为130千瓦时,则10月份小聪家应付电费多少元?
(2)已知小聪家10月份的用电量为m千瓦时,请完成下列填空:
①若m≤50千瓦时,则10月份小聪家应付电费为      元;
②若50<m≤200千瓦时,则10月份小聪家应付电费为      元;
③若m>200千瓦时,则10月份小聪家应付电费为      元.
(3)若10月份小聪家应付电费为96.50元,则10月份小聪家的用电量是多少千瓦时?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;②买一套西装送一条领带.现某客户要到该服装厂购买x套西装(x≥1),领带条数是西装套数的4倍多5.
(1)若该客户按方案①购买,需付款      元:(用含x的代数式表示)
若该客户按方案②购买,需付款      元;(用含x的代数式表示)
(2)若x=10,通过计算说明此时按哪种方案购买较为合算?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,用三种大小不同的五个正方形和一个缺角的长方形拼成长方形ABCD,其中,NH=NG=1cm,设BF=acm.

(1)用含a的代数式表示CE=      cm,DE=      cm;
(2)求长方形ABCD的周长.(用含a的代数式表示)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.
(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为      元,乙旅行社的费用为      元;(用含a的代数式表示,并化简.)
(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.
(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为      .(用含a的代数式表示,并化简.)
(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

火车站和汽车站都为旅客提供打包服务,如果长、宽、高分别为x、y、z的箱子按如图所示的方式打包,则打包带的长至少为多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一家电信公司推出两种移动电话计费方法:计费方法A是每月收月租费58元,通话时间不超过分钟的部分免费,超过分钟的按每分钟0.25元加收通话费;计费方法B是每月收取月租费88元,通话时间不超过分钟的部分免费,超过分钟的按每分钟0.20元收通话费.现在设通话时间是分钟.
(1)当通话时间超过分钟时,请用含的代数式表示计费方法A的通话费用.
(2)当通话时间超过分钟时,请用含的代数式表示计费方法B的通话费用.
(3)用计费方法A的用户一个月累计通话360分钟所需的话费,若改用计费方法B,则可通话多少分钟?
(4)请你分析,当通话时间超过多少分钟时采用计费方法B合算?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一种长方形餐桌的四周可以坐6人用餐(带阴影的小长方形表示1个人的位置).现把张这样的餐桌按如图方式拼接起来.

(1)问四周可以坐多少人用餐?(用的代数式表示)
(2)若有26人用餐,至少需要多少张这样的餐桌?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.
(1)若设图中最大正方形B的边长是x米,请用含x的代数式表示出正方形F、E和C的边长分别为            ,                     
(2)观察图形可知,长方形相对的两边是相等的(如图中的MN和PQ),请根据这个等量关系,求出x的值;
(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙两个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某市规定如下用水收费标准:每户每月用水不超过6立方米时,水费按每立方米a元收费;超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按b元收费.该市某户今年3、4月份的用水量和水费如下表所示:

月份
用水量(立方米)
水费(元)
3
5
7.5
4
9
27

(1)求出a与b的值;
(2)求当用户用水为x立方米时的水费(用含x的代数式表示);
(3)某用户某月交水费39元,这个月该用户用水多少立方米?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.45元收费,如果超过140度,超过部分按每度0.60元收费.
(1)若该住户五月份的用电量是100度,则他五月份应交多少电费?
(2)若该住户六月份的用电量是200度,则他六月份应交多少电费?
(3)若某住户七月份的用电量是度(>140),求这个用户七月份应交多少电费?(结果用含的式子表示)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.

(1)认为图②中的阴影部分的正方形的边长等于       
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积,
方法①                  ;方法②                  
(3)观察图②,你能写出(m+n)2,(m-n)2,4mn这三个代数式之间的等量关系吗?
(4)根据⑶题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a-b)2的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两家文具商店出售同样的钢笔和本子.钢笔每支18元,本子每本2元.甲商店推出的优惠方法为买一支钢笔送两本本子;乙商店的优惠方法为按总价的九折优惠.小丽想购买5支钢笔,本子本(≥10)
(1)若到甲商店购买,应付                元(用代数式表示).
(2)若到乙商店购买,应付                元(用代数式表示).
(3)若小丽要买本子10本,应选择那家商店?若买100本呢?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学列代数式解答题