如图,将边长为 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为
A. B. C. D.
图(1)是一个长为 ,宽为 的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是
A. B. C. D.
某水果店销售50千克香蕉,第一天售价为9元 千克,第二天降价为6元 千克,第三天再降为3元 千克.三天全部售完,共计所得270元.若该店第二天销售香蕉 千克,则第三天销售香蕉 千克.(用含 的代数式表示.
苹果原价是每斤 元,现在按8折出售,假如现在要买一斤,那么需要付费
A. 元B. 元C. 元D. 元
某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是
A. |
先打九五折,再打九五折 |
B. |
先提价 ,再打六折 |
C. |
先提价 ,再降价 |
D. |
先提价 ,再降价 |
由于受 禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降 ,3月份比2月份下降 ,已知1月份鸡的价格为24元 千克.设3月份鸡的价格为 元 千克,则
A. B.
C. D.
某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米 元;超过部分每立方米 元.该地区某用户上月用水量为20立方米,则应缴水费为
A. |
元 |
B. |
元 |
C. |
元 |
D. |
元 |
如图是一个长为 ,宽为 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.
(1)用含字母 , 的代数式表示矩形中空白部分的面积;
(2)当 , 时,求矩形中空白部分的面积.
对于任意一个四位数 ,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数 为"共生数".例如: ,因为 ,所以3507是"共生数"; ,因为 ,所以4135不是"共生数".
(1)判断5313,6437是否为"共生数"?并说明理由;
(2)对于"共生数" ,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记 .求满足 各数位上的数字之和是偶数的所有 .
“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向 , 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥; , 两个果园分别需用110吨和70吨有机化肥.两个仓库到 , 两个果园的路程如表所示:
路程(千米) |
||
甲仓库 |
乙仓库 |
|
果园 |
15 |
25 |
果园 |
20 |
20 |
设甲仓库运往 果园 吨有机化肥,若汽车每吨每千米的运费为2元,
(1)根据题意,填写下表.
运量(吨 |
运费(元 |
|||
甲仓库 |
乙仓库 |
甲仓库 |
乙仓库 |
|
果园 |
|
|
|
|
果园 |
|
|
|
|
(2)设总运费为 元,求 关于 的函数表达式,并求当甲仓库运往 果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?