(本题14分)如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x, △PDQ的面积为y,求y关于x的函数表达式,并求自变量的取值范围;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.
如图,在
中,
,
,
,动点
从点
开始沿边
向
以
的速度移动(不与点
重合),动点
从点
开始沿边
向
以
的速度移动(不与点
重合).如果
、
分别从
、
同时出发,那么经过_____________秒,四边形
的面积最小.
课题学习(本题10分)
●探究 (1) 在图1中,已知线段AB,CD,其中点分别为E,F.
①若A (-1,0), B (3,0),则E点坐标为__________;
②若C (-2,2), D (-2,-1),则F点坐标为__________;
(2)在图2中,已知线段AB的端点坐标为A(a,b) ,B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d), AB中点为D(
x,y) 时,x=_________,y=___________.(不必证明)
★●运用在图2中,
的图象x轴交于P点。一次函数
与
的图象交点为A,B.
①
求出交点A
,B的坐标(用k表示);
②若D为AB中点,且PD垂直于AB时,请利用上面的结论求出k的值。

如图,抛物线
(a
0)与双曲线
相交于点A,B. 已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
(1)求实数a,b,k的值;
(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标.
如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,……,重复操作依次得到点P1,P2,…, 则点P2010的坐标是( ).
|
| A.(2010,2) | B.(2010, ) |
C.(2012, ) |
D.(0,2) |