如图所示,一个圆弧形光滑细圆管轨道ABC,放置在竖直平面内,轨道半径为R,在A点与水平面AD相接,地面与圆心O等高,MN是放在水平地面上长为3R、厚度不计的垫子,左端M正好位于A点,将一个质量为m、直径略小于圆管直径的小球从A处管口正上方某处由静止释放,不考虑空气阻力。
(1)若小球从C点射出后恰好能打到垫子的M端,则小球经过C点时对管的作用力大小和方向如何?
(2)欲使小球能通过C点落到垫子上,小球的释放点离A点的最大高度是多少?
长1米的木板A,质量为M=1kg,静止在水平地面上。在木板最左端有一质量为m=2kg的小物块B,在沿水平向右F=10牛的恒力作用下由静止开始运动,物块和木板、木板和水平面间的滑动摩擦系数分别为。在把小物块从木板右端拉下去的过程中,求:
(1)运动过程中A、B的加速度分别是多大?
(2)在此过程中木板运动的位移为多大?(小物块可看作质点)(g取10m/s2)
如图甲所示,有一足够长的粗糙斜面,倾角θ=37°,一滑块以初速度v0=16 m/s从底端A点滑上斜面,滑至B点后又返回到A点.滑块运动的图象如图乙所示,求:(已知:sin37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2)
(1)AB之间的距离;
(2)滑块再次回到A点时的速度;
(3)滑块在整个运动过程中所用的时间。
如图所示,质量为m1=5 kg的滑块,置于一粗糙的斜面上,用一平行于斜面的大小为30 N的力F推滑块,滑块沿斜面向上匀速运动,斜面体质量m2=10 kg,且始终静止,取g=10 m/s2,求:
(1)斜面对滑块的摩擦力;
(2)地面对斜面体的摩擦力和支持力。
如图所示,光滑的水平面上静止着半径相同的三个小球A、B、C,其中小球A、C的质量分别为mA=m、mC=4m。现使A以初速沿B、C的连线方向向B运动,求B球的质量M为何值时,才能使C球碰撞后的速度最大?(已知A、B、C之间的碰撞均为弹性碰撞)
如图所示, MN为竖直放置的光屏,光屏的左侧有半径为R、折射率为的透明半球体,O为球心,轴线OA垂直于光屏,O至光屏的距离。位于轴线上O点左侧处的点光源S发出一束与OA夹角θ=60°的光线射向半球体,求光线从S传播到达光屏所用的时间。已知光在真空中传播的速度为c。
如图所示,在一辆静止的小车上,竖直固定着两端开口、内径均匀的U形管,U形管的竖直部分与水平部分的长度均为l,管内装有水银,两管内水银面距管口均为。现将U形管的左端封闭,并让小车水平向右做匀加速直线运动,运动过程中U形管两管内水银面的高度差恰好为。已知重力加速度为g,水银的密度为ρ,大气压强为p0=ρgl,环境温度保持不变,求
(ⅰ)左管中封闭气体的压强p;
(ⅱ)小车的加速度a。
如图所示,直线MN上方存在着垂直纸面向里、磁感应强度为B的匀强磁场,质量为m、电荷量为-q(q>0)的粒子1在纸面内以速度从O点射入磁场,其方向与MN的夹角α=30°;质量为m、电荷量为+q的粒子2在纸面内以速度也从O点射入磁场,其方向与MN的夹角β=60°角。已知粒子1、2同时到达磁场边界的A、B两点(图中未画出),不计粒子的重力及粒子间的相互作用。
(1)求两粒子在磁场边界上的穿出点A、B之间的距离d;
(2)求两粒子进入磁场的时间间隔;
(3)若MN下方有平行于纸面的匀强电场,且两粒子在电场中相遇,其中的粒子1做直线运动。求电场强度E的大小和方向。
如图所示,将直径为2R的半圆形导轨固定在竖直面内的A、B两点,直径AB与竖直方向的夹角为60°。在导轨上套一质量为m的小圆环,原长为2R、劲度系数的弹性轻绳穿过圆环且固定在A、B两点。已知弹性轻绳满足胡克定律,且形变量为x时具有弹性势能,重力加速度为g,不计一切摩擦。将圆环由A点正下方的C点静止释放,当圆环运动到导轨的最低点D点时,求
(1)圆环的速率v;
(2)导轨对圆环的作用力F的大小?
如图,两个大小相同小球用同样长的细线悬挂在同一高度,静止时两个小球恰好接触,两个小球质量分别为和 (),现将拉离平衡位置,从高处由静止释放,和碰撞后被弹回,上升高度为,试求碰后能上升的高度。(已知重力加速度为g)
如下图所示是一列沿轴正方向传播的简谐横波在时刻的波形图,已知波的传播速度,试回答下列问题:
(1)求出处的质点在内通过的路程及 时该质点的位移;
(2)写出处的质点的振动函数表达式。
如图,一根粗细均匀、内壁光滑、竖直放置的玻璃管下端密封,上端封闭但留有一抽气孔.管内下部被活塞封住一定量的气体(可视为理想气体),气体温度为T1.开始时,将活塞上方的气体缓慢抽出,当活塞上方的压强达到p0时,活塞下方气体的体积为V1,活塞上方玻璃管的容积为3.8V1。活塞因重力而产生的压强为0.5p0。继续将活塞上方抽成真空并密封.整个抽气过程中管内气体温度始终保持不变.然后将密封的气体缓慢加热.求:
(1)活塞刚碰到玻璃管顶部时气体的温度;
(2)当气体温度达到3.2T1时气体的压强.
如图所示,有一放射源可以沿轴线ABO方向发射速度大小不同的粒子,粒子质量均为,带正电荷。A、B是不加电压且处于关闭状态的两个阀门,阀门后是一对平行极板,两极板间距为,上极板接地,下极板的电势随时间变化关系如图(b)所示。O处是一与轴线垂直的接收屏,以O为原点,垂直于轴线ABO向上为轴正方向,不同速度的粒子打在接收屏上对应不同的坐标,其余尺寸见图(a),其中和均为已知。已知,不计粒子重力。
(1)某时刻A、B同时开启且不再关闭,有一个速度为的粒子恰在此时通过A阀门,以阀门开启时刻作为图(b)中的计时零点,试求此粒子打在轴上的坐标位置(用表示)。
(2)某时刻A开启,后A关闭,又过后B开启,再过后B也关闭。求能穿过阀门B的粒子的最大速度和最小速度。
(3)在第二问中,若以B开启时刻作为图(b)中的计时零点,试求解上述两类粒子打到接收屏上的坐标(用表示)。
如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60m的轻细绳,它的一端系住一质量为的小球P ,另一端固定在板上的O点.当平板的倾角固定为时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0m/s .若小球能保持在板面内作圆周运动,倾角的值应在什么范围内?(取重力加速度g=10m/s2)
如图甲所示,放置在水平桌面上的两条光滑导轨间的距离L=1m,质量m=1kg的光滑导体棒放在导轨上,导轨左端与阻值R=4Ω的电阻相连,导体棒及导轨的电阻不计,所在位置有磁感应强度为B=2T的匀强磁场,磁场的方向垂直导轨平面向下。现在给导体棒施加一个水平向右的恒定拉力F,并每隔0.2s测量一次导体棒的速度,乙图是根据所测数据描绘出导体棒的v-t图象。设导轨足够长,求:
(1)力F的大小;
(2)t =1.2s时,导体棒的加速度;
(3)估算1.6s内电阻R上产生的热量。