如图所示,在一辆静止的小车上,竖直固定着两端开口、内径均匀的U形管,U形管的竖直部分与水平部分的长度均为l,管内装有水银,两管内水银面距管口均为。现将U形管的左端封闭,并让小车水平向右做匀加速直线运动,运动过程中U形管两管内水银面的高度差恰好为。已知重力加速度为g,水银的密度为ρ,大气压强为p0=ρgl,环境温度保持不变,求(ⅰ)左管中封闭气体的压强p;(ⅱ)小车的加速度a。
过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径、。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。
小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地。如题24图所示。已知握绳的手离地面高度为d,手与球之间的绳长为d,重力加速度为g。忽略手的运动半径和空气阻力。(1)求绳断时球的速度大小和球落地时的速度大小。(2)向绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应是多少?最大水平距离为多少?
14. (16分)在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg的指点,选手抓住绳由静止开始摆动,此事绳与竖直方向夹角=,绳的悬挂点O距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取中立加速度,,(1)求选手摆到最低点时对绳拉力的大小F;(2)若绳长l="2m," 选手摆到最高点时松手落入手中。设水碓选手的平均浮力,平均阻力,求选手落入水中的深度;(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。
如图,水平地面上有一个坑,其竖直截面为半圆。ab为沿水平方向的直径。若在a点以初速度沿ab方向抛出一小球,小球会击中坑壁上的c点。已知c点与水平地面的距离为圆半径的一半,求圆的半径。
小球在半径为R的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v、周期T的关系.(小球的半径远小于R)