如图所示,电容器两极板相距为d,两极板间电压为U,极板间的匀强磁场的磁感应强度为,一束电荷量相同的带正电的粒子从图中虚线方向射入电容器,沿直线穿过电容器后进入另一磁感应强度为的匀强磁场,结果分别打在A.b两点,已知粒子带电量为q,ab之间的间距为,不计粒子所受重力及相互作用,求:
(1)粒子在匀强磁场中运动的速率。
(2)若打在b点的粒子的质量为,则打在a点的粒子的质量为多少。
如图所示,两平行金属导轨间的距离L=0.4m,金属导轨所在平面与水平面夹角,在导轨所在的平面内,分布着磁感应强度B=0.5T、方向垂直于导轨所在平面的匀强磁场,金属导轨的一端接有电动势E=6V,内阻r=0.5Ω的直流电源,现把一个质量m=0.04kg的导体棒ab放在金属导轨上,导体棒恰好静止,导体棒与金属导轨垂直且接触良好,导体棒与金属导轨接触的两点间的电阻,金属导轨电阻不计,,已知sin37°=0.6,cos37°=0.8,求:
(1)导体棒受到的安培力大小。
(2)导体棒受到的摩擦力的大小和方向。
两平行金属光滑导轨间的距离,导轨所在平面与水平面之间的夹角为,在导轨所在的空间内分布着磁感应强度大小、方向垂直于导轨所在平面向上的匀强磁场,导轨的一端接有水平放置的线圈,内阻,面积为,匝数匝。已知线圈平面内有垂直平面向上的磁场以的变化率均匀减小,现将一质量kg、内阻的导体棒垂直导轨放置,与导轨接触良好,开关S接通后撤去外力导体棒能保持静止,重力加速度。(,)求:
(1)线圈上产生的电动势大小;
(2)通过定值电阻的电流大小.
如图所示,竖直放置的半圆形光滑绝缘轨道半径为R=0.2m,圆心为O,下端与绝缘水平轨道在B点相切并平滑连接.一带正电、质量为的物块(可视为质点),置于水平轨道上的A点.已知A、B两点间的距离为L=1.0m,物块与水平轨道间的动摩擦因数为μ=0.2,重力加速度为g="10" m/s2.
(1)若物块在A点以初速度向左运动,恰好能到达圆周的最高点D,则物块的初速度应为多大?
(2)若整个装置处于方向水平向左、场强大小为的匀强电场中(图中未画出),现将物块从A点由静止释放,试确定物块在以后运动过程中速度最大时的位置(结果可用三角函数表示);
(3)在(2)问的情景中,试求物块在水平面上运动的总路程.
假设某星球表面上有一倾角为的固定斜面,一质量为的小物块从斜面底端以速度9m/s沿斜面向上运动,小物块运动1.5s时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为.(.),试求:
(1)该星球表面上的重力加速度g的大小;
(2)该星球的第一宇宙速度.
如图所示,一带电粒子以某一速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面向里、磁感应强度为 B 的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后垂直电场方向进入宽为 L 的匀强电场。电场强度大小为 E,方向竖直向上。当粒子穿出电场时速度大小变为原来的 倍。已知带电粒子的质量为 m,电量为 q,重力不计。粒子进入磁场前的速度如图与水平方向成θ=60°角。求:
(1)粒子带什么性质的电荷;
(2)粒子在磁场中运动时速度多大;
(3)该最小的圆形磁场区域的面积为多大?
利用电动机通过如图所示的电路提升重物,已知电源电动势E=6 V,电源内阻r=1 Ω,电阻R=3 Ω,重物质量m=0.10 kg,当将重物固定时,电压表的示数为5 V,当重物不固定,且电动机最后以稳定的速度匀速提升重物时,电压表的示数为5.5 V,求:
(1)电动机线圈的电阻R1
(2)电动机以稳定的速度匀速提升重物时,消耗的电功率
(3)重物匀速上升时的速度大小(不计摩擦,g取10 m/s2).
边长为L=0.2 m的正方形区域内有垂直纸面向里的匀强磁场,穿过该区域磁场的磁感应强度随时间变化的图象如图乙所示。将边长为L/2,匝数n=100,线圈电阻r=1.0 Ω的正方形线圈abcd放入磁场,线圈所在平面与磁感线垂直,如图甲所示。求:
(1)回路中感应电流的方向及磁感应强度的变化率;
(2)在0~4.0 s内通过线圈的电荷量q;
(3)0~6.0 s内整个闭合电路中产生的热量。
如图所示,在水平轨道右侧安放半径为R=0.2m的竖直圆形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为L=1m,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然状态.质量为m=1kg的小物块A(可视为质点)从轨道右侧以初速度v0=2 m/s冲上轨道,通过圆形轨道、水平轨道后压缩弹簧并被弹簧以原速率弹回,经水平轨道返回圆形轨道.物块A与PQ段间的动摩擦因数μ=0.2,轨道其他部分摩擦不计,重力加速度g=10m/s2.求:
(1)物块A与弹簧刚接触时的速度大小v1;
(2)物块A被弹簧以原速率弹回返回到圆形轨道的高度h1;
(3)调节PQ段的长度L,A仍以v0从轨道右侧冲上轨道,当L满足什么条件时,物块A能第一次返回圆形轨道且能沿轨道运动而不脱离轨道.
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2。足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L。假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有2/3能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;
(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件。试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子。
有一金属细棒ab,质量m=0.05kg,电阻不计,可在两条轨道上滑动,如图所示,轨道间距为L=0.5m,其平面与水平面的夹角为θ=37°,置于垂直于轨道平面向上的匀强磁场中,磁感应强度为B=1.0T,金属棒与轨道的动摩擦因数μ=0.5,(设最大静摩擦力与滑动摩擦力大小相等)回路中电源电动势为E=3V,内阻r=0.5Ω.(g=10m/s2,sin37°=0.6,cos37°=0.8)求:
(1)为保证金属细棒不会沿斜面向上滑动,流过金属细棒ab的电流的最大值为多少?
(2)滑动变阻器R的阻值应调节在什么范围内,金属棒能静止在轨道上?
物体静止在光滑水平面上,先对物体施加一水平向右的恒力,经过时间t后撤去,立即再对它施加一个水平向左的恒力,又经过时间4t物体回到出发点,此时物体的动能为50J,求:
(1)恒力与恒力的比值
(2)恒力对物体做的功和恒力对物体做的功各为多少
如图,传送带AB总长为l=10cm,与一个半径为R=0.4m的光滑四分之一圆轨道BC相切于B点,传送带速度恒为v=6m/s,方向向右,现有一个滑块以一定初速度从A点水平滑上传送带,滑块质量为m=10kg,滑块与传送带间的动摩擦因数为μ=0.1,已知滑块运动到B端时,刚好与传送带同速,求:
(1)滑块的初速度,
(2)滑块能上升的最大高度h;
(3)求滑块第二次子啊传送带上滑行时,滑块和传送带系统产生的内能
一长为L的细线,上端固定,下端栓一质量为m、带电荷量为q的小球,处于如图所示的水平向右的匀强电场中,开始时,将线与小球拉成水平,然后释放,小球由静止开始向下摆动,当细线转过60°角时,小球到达B点速度恰好为零,求:
(1)AB两点的电势差
(2)匀强电场的场强大小
(3)小球到达B点时,细线对小球的拉力大小