如图所示,电容器两极板相距为d,两极板间电压为U,极板间的匀强磁场的磁感应强度为,一束电荷量相同的带正电的粒子从图中虚线方向射入电容器,沿直线穿过电容器后进入另一磁感应强度为的匀强磁场,结果分别打在A.b两点,已知粒子带电量为q,ab之间的间距为,不计粒子所受重力及相互作用,求:(1)粒子在匀强磁场中运动的速率。(2)若打在b点的粒子的质量为,则打在a点的粒子的质量为多少。
在光滑绝缘水平面上放置一质量m=0.2kg、q=+5.0×10-4C的小球,小球系在长L=0.5m的绝缘细线上,线的另一端固定在O点.整个装置置于匀强电场中,电场方向与水平面平行且沿OA方向,如图所示(此图为俯视图).现给小球一初速度使其绕O点做圆周运动,小球经过A点时细线的张力F=140N,小球在运动过程中,最大动能比最小动能大20J,小球视为质点.(1)求电场强度E的大小;(2)求运动过程中小球的最小动能;(3)若小球运动到动能最小的位置时细线被剪断,则小球经多长时间其动能与在A点时的动能相等?此时小球距A点多远?
如图所示,AB是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数μ=0.30,BCD是半径为R=0.2m的光滑圆弧轨道,它们相切于B点,C为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E=4.0×103N/C,质量m=0.20kg的带电滑块从斜面顶端由静止开始滑下。已知斜面AB对应的高度h=0.24m,滑块带电荷q=-5.0×10-4 C,取重力加速度g=10m/s2,sin37°=0.60,cos37°=0.80。求:(1)滑块从斜面最高点滑到斜面底端B点时的速度大小;(2)滑块滑到圆弧轨道最低点C时对轨道的压力。
如图所示,在高h1=1.2m的光滑水平台面上,质量m=1kg的小物块压缩弹簧后被锁扣K锁住,储存了一定量的弹性势能Ep,若打开锁扣K,物块与弹簧分离后将以一定的水平速度v1向右滑离平台,并恰好能从B点的切线方向进入光滑圆弧形轨道BC,B点的高度h2=0.6m,其圆心O与平台等高,C点的切线水平,并与地面上长为L=2.8m的水平粗糙轨道CD平滑连接,小物块沿轨道BCD运动与右边墙壁发生碰撞,取g=10m/s2。⑴求小物块由A到B的运动时间;⑵小物块原来压缩弹簧时储存的弹性势能Ep是多大?⑶若小物块与墙壁碰撞后速度方向反向,大小为碰前的一半,且只发生一次碰撞,则小物块与轨道CD之间的动摩擦因数μ的取值范围多大?
在半径R=5000 km 的某星球表面,宇航员做了如下实验.实验装置如图甲所示,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2 kg 的小球从轨道AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H的大小,可测出相应的F大小,F随H的变化关系如图乙所示.求:(1)圆轨道的半径.(2)该星球的第一宇宙速度.
如图所示,在绝缘水平面上,相距为L的A、B两点处分别固定着两个等量正电荷.a、b是AB连线上两点,其中Aa=Bb=,O为AB连线的中点.一质量为m带电量为+q的小滑块(可视为质点)以初动能E0从a点出发,沿AB直线向b运动,其中小滑块第一次经过O点时的动能为初动能的n倍(n>1),到达b点时动能恰好为零,小滑块最终停在O点,求:(1)小滑块与水平面间的动摩擦因数μ.(2)Ob两点间的电势差Uob.(3)小滑块运动的总路程S.