如图所示,一个质量为m、电量为+q的带电粒子从A孔以初速度v0垂直于AD进入磁感应强度为B的匀强磁场中,并恰好从C孔垂直于OC射入匀强电场中,电场方向跟OC平行,OC⊥AD,最后打在D点,且。若已知m,q,v0,B,不计重力,试求:
(1)粒子由A运动到D点所需时间;
(2)粒子抵达D点时的动能.
在高纬度地区的高空,大气稀薄,常出现五颜六色的弧状、带状或幕状的极其美丽壮观的发光现象,这就是我们常说的“极光”.“极光”是由太阳发射的高速带电粒子受地磁场的影响,进入两极附近时,撞击并激发高空中的空气分子和原子引起的.假如我们在北极地区忽然发现正上方的高空出现了射向地球的沿顺时针方向生成的紫色弧状极光(显示带电粒子的运动轨迹).则关于引起这一现象的高速带电粒子的电性及弧状极光的弯曲程度的说法中,正确的是( )
A.高速粒子带负电 | B.高速粒子带正电 |
C.轨迹半径逐渐减小 | D.轨迹半径逐渐增大 |
如图所示,宽为d的有界匀强磁场的边界为PP′、QQ′。一个质量为m、电荷量为q的微观粒子沿图示方向以速度v0垂直射入磁场,磁感应强度大小为B,要使粒子不能从边界QQ′射出,粒子的入射速度v0的最大值可能是下面给出的(粒子的重力不计)( )
A. | B. | C. | D. |
如图所示,左侧为粒子加速器,A中产生粒子的速度从0到某一很小值之间变化,粒子的质量为m,电荷量为q(q>0),经过电压U加速,穿过狭缝S1进入中间的速度选择器。选择器中的电场强度为E0,磁感应强度为B0。粒子穿过狭缝S2进入右侧的粒子偏转区,最后要求落到屏上的P点。已知偏转区宽度为L,P点离O点的距离为L/2,不计重力。
(1)求粒子刚进入狭缝S1时速度v1的大小(不计粒子在A中的速度);
(2)求粒子通过速度选择器刚进入狭缝S2时速度v2的大小;
(3)请你提出一种简单方案,使粒子在偏转区内从S2飞入恰好能打到屏上的P点。
要求:①在答卷图上的粒子偏转区内画出示意图(注意规范);②求出你所用方案中涉及到的一个最关键的物理量的大小。
如图所示,有界匀强磁场边界线SP∥MN,速率不同的同种带电粒子(重力不计且忽略粒子间的相互作用)从S点沿SP方向同时射入磁场。其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60°角,则粒子从S点分别到a、b所需时间之比为
A.1∶3 | B.4∶3 | C.3∶2 | D.1∶1 |
如图所示,x轴上方有一匀强磁场,磁感应强度的方向垂直于纸面向里,大小为B,x轴下方有一匀强电场,电场强度的大小为E,方向与y轴的夹角θ为450且斜向上方. 现有一质量为m电量为q的正离子,以速度v0由y轴上的A点沿y轴正方向射入磁场,该离子在磁场中运动一段时间后从x轴上的C点(图中未画出)进入电场区域,该离子经C点时的速度方向与x轴夹角为450. 不计离子的重力,设磁场区域和电场区域足够大.求:
(1)C点的坐标
(2)离子从A点出发到第三次穿越x轴时的运动时间
(3)离子第四次穿越x轴时速度的大小及速度方向与电场方向的夹角(求出正切值即可)
如图所示,在x轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为B。在xOy平面内,从原点O处沿与x轴正方向成θ角(0<θ<π)以速率v发射一个带正电的粒子(重力不计).则下列说法正确的是
A.若v一定,θ越大,则粒子在磁场中运动的时间越短
B.若v一定,θ越大,则粒子在离开磁场的位置距O点越远
C.若θ一定,v越大,则粒子在磁场中运动的角速度越大
D.若θ一定, v越大,则粒子在磁场中运动的时间越短
如图,直线MN 上方有平行于纸面且与MN成450的有界匀强电场,电场强度大小未知;MN下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B。今从MN上的O点向磁场中射入一个速度大小为v、方向与MN成450角的带正电粒子,该粒子在磁场中运动时的轨道半径为R。若该粒子从O点出发记为第一次经过直线MN,而第五次经过直线MN时恰好又通过O点。不计粒子的重力。求:
(1)电场强度的大小;
(2)该粒子再次从O点进入磁场后,运动轨道的半径;
(3)该粒子从O点出发到再次回到O点所需的时间。
如图甲所示,粒子源能连续释放质量为m,电荷量为+q,初速度近似为零的粒子(不计重力),粒子从正极板附近射出,经两金属板间电场加速后,沿y轴射入一个边界为矩形的匀强磁场中,磁感应强度为B,磁场方向垂直纸面向里.磁场的四条边界分别是y =0,y=a,x=-1.5a,x=1.5a.两金属板间电压随时间均匀增加,如图乙所示.由于两金属板间距很小,微粒在电场中运动时间极短,可认为微粒加速运动过程中电场恒定.
(1)求微粒分别从磁场上、下边界射出时对应的电压范围;
(2)微粒从磁场左侧边界射出时,求微粒的射出速度相对进入磁场时初速度偏转角度的范围,并确定在左边界上出射范围的宽度d .
在一半径为R圆形区域内有磁感应强度为B的匀强磁场,方向垂直纸面向外。一束质量为m、电量为q带正电的粒子沿平行于直径MN的方向进入匀强磁场,粒子的速度大小不同,重力不计。入射点P到直径MN的距离为h,求:
(1)某粒子经过磁场射出时的速度方向恰好与其入射方向相反,求粒子的入射速度是多大?
(2)恰好能从M点射出的粒子速度是多大?
如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一个重力不能忽略、中间带有小孔的带正电小球套在细杆上。现在给小球一个水平向右的初速度v0,假设细杆足够长,小球在运动过程中电荷量保持不变,杆上各处的动摩擦因数相同,则小球运动的速度v与时间t的关系图像可能是
带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将
A.可能做直线运动 | B.可能做匀减速运动 |
C.一定做曲线运动 | D.可能做匀速圆周运动 |
如图,在xOy平面第一象限内有平行于y轴的匀强电场和垂直于平面的匀强磁场,电场强度为E。一带电量为+q的小球从y轴上A点(0,l)以沿x轴正向的初速度进入第一象限,小球做匀速圆周运动,并从x轴上C点(,0)离开电磁场。如果撤去磁场,且将电场反向(场强大小仍为E),带电小球以相同的初速度从A点进入第一象限,仍然从x轴上C点离开电场。求:(重力加速度为g)
(1)小球从A点出发时的初速度大小;
(2)磁感应强度B的大小;
(3)若第一象限内存在的磁场区域为矩形,求该区域最小面积。
如图所示,在x轴的上方有沿y轴负方向的匀强电场,电场强度为E,在x轴的下方等腰三角形CDM区域内有垂直于xOy平面由内向外的匀强磁场,磁感应强度为B,其中C、D在x轴上,它们到原点O的距离均为,。现将一质量为m、带电量为q的带正电粒子,从y轴上的P点由静止释放,设P点到O点的距离为h,不计重力作用与空气阻力的影响。下列说法正确的是( )
A. 若,则粒子垂直CM射出磁场
B.若,则粒子平行于x轴射出磁场
C.若,则粒子垂直CM射出磁场
D.若,则粒子平行于y轴射出磁场