如图所示,有一电子束从a点处以一定的水平速度飞向竖直放置的荧光屏,并垂直击中荧光屏上的b点.已知电子的质量为m,电量为e.
若在电子束运行途中加一个仅存在于半径为r的圆形区域内的匀强磁场,磁感应强度为B,方向垂直纸面向里,圆心O在点a、b连线上,点O距荧光屏的距离为L。
(1)为使电子束仍击中荧光屏上的点b,可加一场强为E的匀强电场.指出此匀强电场的方向和范围,并求出电子束的速度。
(2)现撤去电场,电子束仍以原速度大小沿水平方向从a点发射,试求出此时侧移量y
的表达式。
如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离处,有一个点状的放射源S,它向各个方向发射粒子,粒子的速度都是,已知粒子的电荷与质量之比,现只考虑在图纸平面中运动的粒子,求ab上被粒子打中的区域的长度。
如图21所示,水平直线MN为两个匀强磁场的分界面,MN上方的磁感应强度B1=B,MN下方的磁感应强度B2=2B,磁场方向均垂直纸面向外.在磁场的空间还存在匀强电场,电场强度大小为E,竖直向上.一带电小球从界面上的A点盐电场方向射入上部磁场区域后恰能在竖直方向上做匀速圆周运动.在A点的右侧的界面上有一点P,与A点的距离为d.要使小球能经过P点,则小球从A点射出的速度v应满足什么条件?
如图6 – 14所示,在x轴上方有磁感应强度大小为B,方向垂直纸面向里的匀强磁场.X轴下方有磁感应强度大小为B/2,方向垂直纸面向外的匀强磁场.一质量为m、电量为– q的带电粒子(不计重力),从x轴上的O点以速度v0垂直x轴向上射出.求:
(1)射出之后经多长时间粒子第二次到达x轴,粒子第二次到达x轴时离O点的距离是多少?
(2)若粒子能经过在x轴距O点为L的某点,试求粒子到该点所用的时间(用L与v0表达).
如图所示,水平方向的匀强电场的场强为E(场区宽度为L,竖直方向足够长),紧挨着电场的是垂直纸面向外的两个匀强磁场区,其磁感应强度分别为B和2B,一个质量为m、电荷量为q的带正电粒子(不计重力)从电场的边界MN上的a点由静止释放,经电场加速后进入磁场,经过tB=时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b(虚线为场区的分界面),求:
(1)中间磁场的宽度d;
(2)粒子从a点到b点共经历的时间tab;
(3)当粒子第n次到达电场的边界MN时与出发点a之间的距离sn.
如图所示,在x<0且y<0的区域内存在垂直纸面向里的匀强磁场,磁感应强度大小为B,在x>且y<0的区域内存在沿y轴正方向的匀强电场。一质量为m、电荷量为q的带电粒子从x轴上的M点沿y轴负方向垂直射入磁场,结果带电粒子从y轴的N点射出磁场而进入匀强电场,经电场偏转后打到x轴上的P点,已知=l。不计带电粒子所受重力,求:
(1)带电粒子从射入匀强磁场到射出匀强电场所用的时间;
(2)匀强电场的场强大小。