如图所示,带电平行金属板PQ和MN之间的距离为d;两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。如图建立坐标系,x轴平行于金属板,与金属板中心线重合,y轴垂直于金属板。区域I的左边界在y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为。不计电子重力。
(1)求两金属板之间电势差U;
(2)求电子从区域II右边界射出时,射出点的纵坐标y;
(3)撤除区域I中的磁场而在其中加上沿x轴正向的匀强电场,使得该电子刚好不能从区域II的右边界飞出。求电子两次经过y轴的时间间隔t。
扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆,其简化模型如图所示:Ⅰ、Ⅱ两处宽度均为L的条形匀强磁场区边界竖直,Ⅰ区域磁场垂直纸面向外,Ⅱ区域磁场垂直纸面向里,磁感应强度大小均为B,两磁场区的间距可以调节。以Ⅰ区域左边界上的O点为坐标原点建立坐标系,y轴与左边界重合,x轴与磁场边界的交点分别为O1、O2和O3。一质量为m、电荷量为q的带正电的粒子,平行纸面从O点与y轴的夹角θ=30°射入Ⅰ区域,粒子重力不计。
(1)若粒子恰好从O1射出Ⅰ区域,粒子的速度应为多大?
(2)若粒子从Ⅰ区域右边界射出时速度与x轴的夹角为30°,调节两磁场区的间距,粒子恰好从O3射出Ⅱ区域,则粒子从O射入到从O3射出共经历了多长时间?
如图所示,在正方形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场。在t=0时刻,一位于正方形区域中心O的粒子在abcd平面内向各个方向发射出大量带正电的粒子,所有粒子的初速度大小均相同,粒子在磁场中做圆周运动的半径恰好等于正方形边长,不计重力和粒子之间的相互作用力。已知平行于ad方向发射的粒子在t=t0时刻刚好从磁场边界cd上的某点离开磁场,(已知)求:
(1)粒子的比荷;
(2)从粒子发射到粒子全部离开磁场所用的时间;
(3)假设粒子发射的粒子在各个方向均匀分布,在t=t0时刻仍在磁场中的粒子数与粒子发射的总粒子数之比。
甲图为质谱仪的原理图.带正电粒子从静止开始经过电势差为U的电场加速后,从G点垂直于MN进入偏转磁场.该偏转磁场是一个以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B,带电粒子经偏转磁场后,最终到达照相底片上的H点.测得G、H间的距离为d,粒子的重力忽略不计.
(1)设粒子的电荷量为q,质量为m,试证明该粒子的比荷为:;
(2)若偏转磁场的区域为圆形,且与MN相切于G点,如图乙所示,其它条件不变。要保证上述粒子从G点垂直于MN进入偏转磁场后不能打到MN边界上(MN足够长),求磁场区域的半径应满足的条件。
如图甲所示,两平行金属板A、B的板长l=0.20 m,板间距d=0.20 m,两金属板间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应。在金属板右侧有一方向垂直于纸面向里的匀强磁场,其左右宽度D="0.40" m,上下范围足够大,边界MN和PQ均与金属板垂直。匀强磁场的磁感应强度B=1.0×10-2 T。现从t=0开始,从两极板左端的中点O处以每秒钟1000个的速率不停地释放出某种带正电的粒子,这些粒子均以vo=2.0×105 m/s的速度沿两板间的中线射入电场,已知带电粒子的比荷=1.0×108 C/kg,粒子的重力和粒子间的相互作用都忽略不计,在粒子通过电场区域的极短时间内极板间的电压可以看作不变.求:
(1) t=0时刻进入的粒子,经边界MN射入磁场和射出磁场时两点间的距离;
(2) 当两金属板间的电压至少为多少时,带电粒子不能进入磁场;
(3) 在电压变化的第一个周期内有多少个带电的粒子能进入磁场。
如图所示,一束电荷量为e的电子以垂直于磁感应强度B并垂直于磁场边界的速度v射入宽度为d的匀强磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=600。求电子的质量和穿越磁场的时间。
在一广阔的匀强磁场中,建立一直角坐标系,如图所示,在坐标系的原点O释放一速率为v,质量为m电荷量为十q的粒子(重力不计),释放时速度方向垂直于B的方向,且与x轴成30°角,
则(1)其第一次经过y轴时,轨迹与y轴交点离O点距离为多少?(不考虑空气阻力)
(2粒子从O点开始运动到穿过y轴时所用的时间
(3粒子做圆周运动圆心的坐标
在真空中,半径的圆形区域内有匀强磁场,方向如图所示,磁感应强度B="0.2" T,一个带正电的粒子以初速度从磁场边界上直径ab的一端a射入磁场,已知该粒子的比荷,不计粒子重力.
(1)求粒子在磁场中做匀速圆周运动的半径;
(2)若要使粒子飞离磁场时有最大偏转角,求入射时与ab的夹角及粒子的最大偏转角.
如图所示,宽x=2cm的有界匀强磁场的纵向范围足够大,磁感应强度的方向垂直纸面向内,大小为0.01T。现有一群比荷q/m=4×107C/kg的正粒子,从O点以相同的速率2×104m/s沿纸面不同方向进入磁场,粒子重量忽略不计()。求:
(1)粒子在磁场中做圆周运动的半径;
(2)所有打在y轴上的粒子在磁场中运动的最长时间;
(3)打在分界线x=2cm上粒子的分布范围.
如图所示,一质量为m,电荷量为q的粒子从容器A下方小孔S1飘入电势差为U的加速电场,然后让粒子从小孔S3垂直进入磁感应强度为B的磁场中,最后打到底片D上, 粒子的重力忽略不计。
(1)粒子在S1、S2之间做什么运动? 在S2、S3之间做何种运动,在磁场区域将做何种运动?
(2)粒子刚进入磁场时的速度大小
(3)若粒子最终打到底片的D点, S3距离D多远?
如图所示,在x轴的上方(y>0的空间内)存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带正电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成45°角,若粒子的质量为m,电量为q,求:
(1)该粒子在磁场中作圆周运动的轨道半径;
(2)粒子在磁场中运动的时间。
(14分)质量为m,电荷量为q的带负电粒子自静止开始,经M、N板间的电场加速后,从A点垂直于磁场边界射入宽度为d的匀强磁场中,该粒子离开磁场时的位置P偏离入射方向的距离为L,如图所示.已知M、N两板间的电压为U,粒子的重力不计.
(1)正确画出粒子由静止开始至离开匀强磁场时的轨迹图(用直尺和圆规规范作图);
(2)求匀强磁场的磁感应强度B.
如图所示,三个同心圆是磁场的理想边界,圆1半径R1=R、圆2半径R2=3R、圆3半径R3(R3>R2)大小未定,圆1内部区域磁感应强度为B,圆1与圆2之间的环形区域是无场区,圆2与圆3之间的环形区域磁感应强度也为B。两个区域磁场方向均垂直于纸面向里。t=0时一个质量为m,带电量为+q(q>0)的离子(不计重力),从圆1上的A点沿半径方向以速度飞进圆1内部磁场。问:
(1)离子经多长时间第一次飞出圆1?
(2)离子飞不出环形磁场圆3边界,则圆3半径R3至少为多大?
(3)在满足了(2)小题的条件后,离子自A点射出后会在两个磁场不断地飞进飞出,从t=0开始到离子第二次回到A点,离子运动的总时间为多少?
(4)在同样满足了(2)小题的条件后,若环形磁场方向为垂直于纸面向外,其它条件不变,从t=0开始到离子第一次回到A点,离子运动的路径总长为多少?
为了获得一束速度大小确定且方向平行的电子流,某人设计了一种实验装置,其截面图如题9图所示。其中EABCD为一接地的金属外壳。在A处有一粒子源,可以同时向平行于纸面的各个方向射出大量的速率不等的电子。忽略电子间的相互作用力,这些电子进入一垂直于纸面向里的圆形区域匀强磁场后,仅有一部分能进入右侧的速度选择器MNPQ。已知圆形磁场半径为R;速度选择器的MN和PQ板都足够长,板间电场强度为E(图中未画出电场线),匀强磁场垂直于纸面向里大小为B2,电子的电荷量大小为e,质量为m。调节圆形区域磁场的磁感应强度B1的大小,直到有电子从速度选择器右侧射出。求:
(1)速度选择器的MN板带正电还是负电?能从速度选择器右侧射出的电子的速度大小、方向如何?
(2)是否所有从粒子源A处射出并进入磁场的速度大小为(1)问中的电子,最终都能从速度选择器右侧射出?若能,请简要证明,并求出圆形磁场的磁感应强度B1的大小;若不能,请说明理由。(不考虑电子“擦”到金属板的情形以及金属板附近的边界效应)
(3)在最终能通过速度选择器的电子中,从圆形区域磁场出射时距AE为的电子在圆形磁场中运动了多长时间?
(l0分)磁聚焦被广泛的应用在电真空器件中,如图所示,在坐标中存在有界的匀强聚焦磁场,方向垂直坐标平面向外,磁场边界PQ直线与x轴平行,距x轴的距离为,边界POQ的曲线方程为。且方程对称y轴,在坐标x轴上A处有一粒子源,向着不同方向射出大量质量均为m、电量均为q的带正电粒子,所有粒子的初速度大小相同均为v,粒子通过有界的匀强磁场后都会聚焦在x轴上的F点.已知A点坐标为(-a,0),F点坐标为(a,0).不计粒子所受重力和相互作用求:
(1)匀强磁场的磁感应强度;
(2)粒子射入磁场时的速度方向与x轴的夹角为多大时,粒子在磁场中运动时间最长,最长对间为多少?