如图所示,半径为r=0.10m的圆形匀强磁场区域边界跟轴相切于坐标原点O,磁感应强度按图示规律变化,方向垂直直纸面向里,在t=0时刻由O处沿y轴正方向射入速度为的带负电粒子,已知粒子质量,不计粒子重力,求粒子在磁场中的运动时间和离开磁场时的位置坐标。
如图所示,一束质量、速度和电荷量不全相等的正离子,沿着垂直于磁感线、平行于极板的方向竖直向上射入正交的匀强电场和匀强磁场里,结果有些离子保持原来的运动方向,未发生偏转.如果让这些未偏转的离子进入另一个匀强磁场中,发现这些离子又分裂为几束.对这些能够进入后一个磁场的离子,下列说法中正确的是 ( )
A.它们的动能一定不全相同 | B.它们的电荷量一定不全相同 |
C.它们的质量一定不全相同 | D.它们的荷质比一定不全相同 |
如右图所示,有一个正方形的匀强磁场区域abcd,e是ad的中点,f是cd的中点,如果在a点沿对角线方向以速度v射入一带负电的带电粒子,恰好从e点射出,则 ( )
A.如果粒子的速度增大为原来的二倍,将从d点射出 |
B.如果粒子的速度增大为原来的三倍,将从f点射出 |
C.如果粒子的速度不变,磁场的磁感应强度变为原来的二倍,也将从d点射出 |
D.只改变粒子的速度使其分别从e、d、f点射出时,从f点射出所用时间最短 |
核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4×107C/㎏,中空区域内带电粒子具有各个方向的速度。
求:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。
(2)所有粒子不能穿越磁场的最大速度。
一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v ,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。
若质子和α粒子以相同的速度垂直射入某一匀强磁场,则质子和α粒子在匀强磁场中运动的 ( )
A.轨道半径之比为1∶1 | B.轨道半径之比为1∶2 |
C.周期之比为1∶1 | D.周期之比为2∶1 |
如图甲所示,一个质量为m、电荷量为+q的带电粒子,不计重力,在a点以某一初速度水平向左射入磁场区域Ⅰ,沿曲线abcd运动,ab、bc、cd都是半径为R的圆弧.粒子在每段圆弧上运动的时间都为t.规定垂直于纸面向外的磁感应强度为正,则磁场区域Ⅰ、Ⅱ、Ⅲ三部分的磁感应强度B随x变化的关系可能是图乙中的 ( )
如图所示,在轴上方有磁感应强度为B的匀强磁场,一个质量为、带电量为的负电荷以速度,从坐标原点O处垂直于轴射入磁场.不计粒子重力,求:粒子在磁场中飞行的时间和飞出磁场点的坐标.
利用如图所示装置可以选择一定速度范围内的带电粒子。图中板上方是磁感应强度大小为、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为和的缝,两缝近端相距为。一群质量为、电荷量为,具有不同速度的的粒子从宽度为的缝垂直于板进入磁场,对于能够从宽度的缝射出的粒子,下列说法正确的是()
A. | 粒子带正电 |
B. | 射出粒子的最大速度为 |
C. | 保持 和 不变,增大 ,射出粒子的最大速度与最小速度之差增大 |
D. | 保持 和 不变,增大 ,射出粒子的最大速度与最小速度之差增大 |
如图,在区域I(0≤x≤d)和区域II(d≤x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正方向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°,此时,另一完全相同的粒子b也从P点以相同的速度沿x轴正方向射入区域I,不计重力和两粒子之间的相互作用力。求:
(1)粒子a射入区域I时速度的大小;
(2)当a离开区域II时,a、b两粒子的y坐标之差。
如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E、宽度为L。在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,圆形磁场区域半径为r。当一带正电的粒子(质量为m,电荷量为q)从A点静止释放后,在M点离开电场,并沿半径方向射入磁场区域,磁感应强度为B,粒子恰好从N点射出,O为圆心,∠MON=120°,粒子重力忽略不计。求:
(1)粒子经电场加速后,进入磁场时速度v的大小;
(2)匀强磁场的磁感应强度B的大小和粒子在电场、磁场中运动的总时间t;
(3)若粒子在离开磁场前某时刻,磁感应强度方向不变,大小突然变为B1,此后粒子恰好被束缚在该磁场中,则B1的最小值为多少?
图中左边有一对平行金属板,两板相距为d,电压为u,两板之间有匀强磁场,磁场应强度大小为B0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力
(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。
(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为,求离子乙的质量。
(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。
如图所示的正方形平面oabc内,存在着垂直于该平面向外的匀强磁场,磁感应强度大小为B,已知正方形边长为L,一质量为m,带电量为+q的粒子(不计重力)在t=0时刻平行于oc边从0点射入磁场中,
(1)若带电粒子从a点射出磁场,求带电粒子在磁场中运动的时间以及初速度的大小;
(2)若磁场的磁感应强度按如图所示的规律变化,规定磁场向外的方向为正方向,磁感应强度的大小为Bo,则要使带电粒子能从oa边界射出磁场,磁感应强度B的变化周期T的最小值应为多少?
(3)若所加磁场与第(2)问中相同,则要使粒子从b点沿ab方向射出磁场,满足这一条件的磁感应强度的变化周期T及粒子射入磁场时的速度Vo应为多少?(不考虑磁场变化产生的电场 )
我国科学家在对放射性元素的研究中,进行了如下实验:如图所示,以MN为界,左、右两边分别是磁感应强度为2B0和B0的匀强磁场,且磁场区域足够大。在距离界线为l处平行于MN固定一个光滑的瓷管PQ,开始时一个放射性元素的原子核处在管口P处,某时刻该原子核沿平行于界线的方向放出一个质量为m、带电量为-e的电子,发现电子在分界线处以方向与界线成60°角的速度进入右边磁场(如图所示),反冲核在管内匀速直线运动,当到达管另一端Q点时,刚好又俘获了这个电子而静止。求:
(1)电子在两磁场中运动的轨道半径大小(仅用l表示)和电子的速度大小;
(2)反冲核的质量。