如图所示,质量为m带电量为+q的小球静止于光滑绝缘水平面上,在恒力F作用下,由静止开始从A点出发到B点,然后撤去F,小球冲上放置在竖直平面内半径为R的光滑绝缘圆形轨道,圆形轨道的最低点B与水平面相切,小球恰能沿圆形轨道运动到轨道末端D,并从D点抛出落回到原出发点A处。整个装置处于电场强度为E= 的水平向左的匀强电场中,小球落地后不反弹,运动过程中没有空气阻力。求:AB之间的距离和力F的大小。
如图所示,将一质量为m="0.1Kg" 的小球自水平平台右端O点以初速度v0水平抛出,小球飞离平台后由A点沿切线落入竖直光滑圆轨道ABC,到达轨道最高点C时,小球的速度为10m/s,圆轨道ABC的形状为半径为R=2.5m的圆截去了左上角的127°的圆弧,CB为其竖直直径,sin37°=0.6,g=10m/s2,
小球运动到轨道最低点B时,轨道对小球的支持力多大?
平台末端O点到A点的竖直高度H
一转动装置如图甲所示,两根足够长轻杆OA、OB固定在竖直轻质转轴上的O点,两轻杆与转轴间夹角均为30°,小球a、b分别套在两杆上,小环c套在转轴上,球与环质量均为m,c与a、b间均用长为L的细线相连,原长为L的轻质弹簧套在转轴上,且与轴上P点、环c相连。当装置以某一转速转动时,弹簧伸长到,环c静止在O处,此时弹簧弹力等于环的重力,球、环间的细线刚好拉直而无张力。弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g。求:
(1)细线刚好拉直而无张力时,装置转动的角速度ω1
(2)如图乙所示,该装置以角速度ω2(未知)匀速转动时,弹簧长为L/2,求此时杆对小球的弹力大小;
(3)该装置转动的角速度由ω1缓慢变化到ω2,求该过程外界对转动装置做的功。
如图所示,长为的细线一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在竖直平面内做完整的圆周运动,已知O点到水平地面的距离Soc =L且 L>,重力加速度为g
求小球通过最高点A时的速度vA的大小.
求小球通过最低点B时,细线对小球的拉力.
求小球运动到A点或B点时细线断裂,小球落到地面对到C点的距离若相等,则和L应满足什么关系?
如图所示,倾角为、宽度为、长为的光滑倾斜导轨,导轨C1D1、C2D2顶端接有定值电阻,倾斜导轨置于垂直导轨平面斜向上的匀强磁场中,磁感应强度为B=5T,C1A1、C2A2是长为S=4.5m的粗糙水平轨道,A1B1、A2B2是半径为R=0.5m处于竖直平面内的光滑圆环(其中B1、B 2为弹性挡板),整个轨道对称。在导轨顶端垂直于导轨放一根质量为m=2kg、电阻不计的金属棒MN,当开关S闭合时,金属棒从倾斜轨道顶端静止释放,已知金属棒到达倾斜轨道底端前已达最大速度,当金属棒刚滑到倾斜导轨底端时断开开关S,(不考虑金属棒MN经过接点C1、C2处和棒与B1、B2处弹性挡板碰撞时的机械能损失,整个运动过程中金属棒始终保持水平,水平导轨与金属棒MN之间的动摩擦因数为µ=0.1,g=10m/s2)。求:
(1)开关闭合时金属棒滑到倾斜轨道底端时的速度;
(2)金属棒MN在倾斜导轨上运动的过程中,电阻R0上产生的热量Q;
(3)当金属棒第三次经过A1A2时对轨道的压力。
如图所示,A,B为两个大小可视为质点的小球,A的质量,B的质量,B球用长的轻质细绳吊起,当细绳位于竖直位置,B球处于静止状态时,B球恰好与弧形轨道MN的末端接触但无作用力,已知弧形轨道的内表面光滑,且末端切线水平,现使A球从距轨道末端的高处由静止释放,当A球运动到轨道末端时与B球发生完全弹性碰撞。若取,求:
A球刚要接触到B球时的速度大小;
两小球相碰撞过程中,B球对A球所做的功;
两个小球碰撞后各自开始运动的瞬间,B球对细绳的拉力大小。
(原创)某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如图所示,光滑轨道中间部分水平,右侧为位于竖直平面内半径为R的半圆,在最低点与直轨道相切.5个大小相同、质量不等的小球并列静置于水平部分,球间有微小间隔,从左到右,球的编号依次为0、1、2、3、4,球的质量依次递减,每球质量与其相邻左球质量之比为k(k<1).将0号球向左拉至左侧轨道距水平高h处,然后由静止释放,使其与1号球碰撞,1号球再与2号球碰撞……所有碰撞皆为无机械能损失的正碰(不计空气阻力,小球可视为质点,重力加速度为g).
(1)0号球与1号球碰撞后,1号球的速度大小v1;
(2)若已知h=0.1m,R=0.64m,要使4号球碰撞后能过右侧轨道的最高点,问k值为多少?
如下图所示,两平行金属板A、B长为L=8 cm,两板间距离d=8 cm,A板比B板电势高300 V,一带正电的粒子电荷量为q=1.0×10-10 C,质量为m=1.0×10-20 kg,沿电场中心线RO垂直电场线飞入电场,初速度v0=2.0×106 m/s,粒子飞出电场后经过界面MN、PS间的无电场区域,然后进入固定在O点的点电荷Q形成的电场区域(设界面PS右侧点电荷的电场分布不受界面的影响).已知两界面MN、PS相距为12 cm,D是中心线RO与界面PS的交点,O点在中心线上,距离界面PS为9 cm,粒子穿过界面PS做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc上.(静电力常量k=9.0×109 N·m2/C2,粒子的重力不计)求:
(1)粒子穿过界面MN时偏离中心线RO的距离多远?到达PS界面时离D点多远?
(2) 垂直打在放置于中心线上的荧光屏的位置离D点多远?.
(3)确定点电荷Q的电性并求其电荷量的大小.
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
如图所示,倾角为θ=45°的粗糙平直导轨与半径为R的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内.一质量为m的小滑块从导轨上离地面高为h=3R的D处无初速下滑并进入圆环轨道.接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力.求:
(1)滑块运动到圆环最高点C时的速度的大小;
(2)滑块运动到圆环最低点时对圆环轨道压力的大小;
(3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功。
如图所示,在xOy平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向、+y轴方向为电场强度的正方向)。在t=0时刻由原点O发射初速度大小为v0,方向沿+y轴方向的带负电粒子(不计重力)。其中已知v0、t0、B0、E0,且,粒子的比荷,x轴上有一点A,坐标为(,0)。
(1)求时带电粒子的位置坐标。
(2)粒子运动过程中偏离x轴的最大距离。
(3)粒子经多长时间经过A点。
【改编】下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2的左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一次并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比。只考虑纸面上带电微粒的运动)求:
(1)满足题目的微粒在磁场中运动的半径的条件?
(2)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(3)上述(2)问中微粒从最初水平射入磁场的位置到D点的距离d1和第二次离开磁场的位置到D点的距离d2。
如图所示,在水平天花板下用a、b两绝缘细线悬挂质量m=0.04 g,带电量q=+1.0×10-4 C的小球,a线竖直,b线刚好伸直,a线长l1=20 cm,b线长l2=40 cm,小球处于静止状态。整个装置处于范围足够大、方向水平且垂直纸面向里的匀强磁场中,磁感应强度B=2.0 T,不计空气阻力,重力加速度g取10 m/s2,试求∶
(1)图示位置a、b线中的张力Ta、Tb的大小;
(2)现将a线烧断,且小球摆到最低点时b线恰好断裂,求此后2 s内小球的位移x的大小。