如图所示,斜面小车M静止在光滑水平面上,一边紧贴墙壁.若再在斜面上加一物体m,且M、m相对静止,试分析小车受哪几个力的作用?
如图,人重600 N,木块A重400 N,人与A、A与地面的动摩擦因数均为0.2,现人用水平力拉绳,使他与木块一起向右做匀速直线运动,滑轮摩擦不计,求:
(1)人对绳的拉力;
(2)人脚对A的摩擦力的方向和大小.
如图所示,劲度系数为k2的轻质弹簧,竖直放在桌面上,上面压一质量为m的物体,另一劲度系数为k1的轻质弹簧竖直地放在物体上面,其下端与物块上表面连接在一起,要想物体在静止时,下面弹簧承受物重的2/3,应将上面弹簧持上端A竖直向上提高多大的距离?
如图所示,为一轻质弹簧的长度L和弹力F的大小关系图线,试由图线确定:
(1)弹簧的原长;
(2)弹簧的劲度系数;
(3)弹簧伸长0.15 m时,弹力的大小.
如图所示,半径为R、内壁光滑的空心圆筒放在地上,将两个重力都是G、半径都是r的球(R<2r<2R)放在圆筒中,求:
(1)筒底对球A的弹力?
(2)筒壁对球A的弹力是否大于筒壁对球B的弹力?
(3)球A对球B的弹力一定大于重力G吗?
(4)球B对筒壁的压力一定小于重力G吗?
如图所示,一圆锥摆摆长为L,下端拴着质量为m的小球,当绳子与竖直方向成θ角时,绳的拉力大小F是多少?圆锥摆周期T是多少? (重力加速度为g)
如图4所示,A、B两物体的质量分别为mA=2.0kg、mB=4.0kg。 物体A与桌面间的动摩擦因数=0.2,当轻轻释放B后,求:
(1)物体A沿桌面滑行的加速度是多少?
(2)物体A受到绳子的拉力多大?(取g=10m/s2)
如图2-1-16所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在此过程中下面木块移动的距离为多少?
图2-1-16
如图12-1-9甲所示是一个单摆振动的情形,O是它的平衡位置,B、C是摆球所能到达的最远位置.设摆球向右方向运动为正方向.图乙所示是这个单摆的振动图象.根据图象回答:(取π2=10)
(1)单摆振动的频率是多大?
(2)开始时刻摆球在何位置?
(3)若当地的重力加速度为10 m/s2,试求这个摆的摆长是多少?
如图12-1-6所示,一个光滑的圆弧形槽半径为R,放在水平地面上,圆弧所对的圆心角小于5°.AD的长为x,今有一小球m1以沿AD方向的初速度v从A点开始运动,要使小球m1可以与固定在D点的小球m2相碰撞,那么小球m1的速度v应满足什么条件?
有人利用安装在气球载人舱内的单摆来确定气球的高度.已知该单摆在海平面处的周期是T0.当气球停在某一高度时,测得该单摆周期为T.求该气球此时离海平面的高度h.(把地球看做质量均匀分布的半径为R的球体)
(15分)如图11所示,板A的质量为m,滑块B的质量为2m,板A用绳拴住,绳与斜面平行,滑块B沿倾角为α的斜面在A板的中间一段匀速下滑,若A、B之间以及B与斜面间的动摩擦因数相同,求动摩擦因数μ.
(15分)如图10所示,质量分别为m和M的两物体P和Q叠放在倾角为θ的斜面上,P、Q之间的动摩擦因数为μ1,Q与斜面间的动摩擦因数为μ2(μ1>μ2).当它们从静止开始沿斜面滑下时,两物体始终保持相对静止,则物体P受到的摩擦力大小为多少?
如图甲是一个单摆振动的情形,O是它的平衡位置,B、C是摆球所能到达的最远位置.设摆球向右运动为正方向.图乙是这个单摆的振动图象.根据图象回答:
(1)单摆振动的频率是多大?
(2)开始时刻摆球在何位置?
(3)若当地的重力加速度为10 m/s2,这个摆的摆长是多少?
如图所示,在倾角θ=37°的足够长的固定的斜面底端有一质量m=1.0 kg的物体,物体与斜面间动摩擦因数μ=0.25,现用轻细绳将物体由静止沿斜面向上拉动,拉力F=10.0 N,方向平行斜面向上,经时间t1=4.0 s绳子突然断了,(sin37°=0.60,cos37°=0.80,g=10 m/s2)求:
(1)绳断时物体的速度大小;
(2)从绳子断开到物体再返回到斜面底端的运动时间?