小车上有一个固定支架,支架上用长为的绝缘细线悬挂质量为m、电量为q的小球,处于水平方向的匀强电场中。小车在距离矮墙x处,向着矮墙从静止开始做加速度a匀加速运动,此时,细线刚好竖直,如图所示。当小车碰到矮墙时,立即停止运动,且电场立刻消失。已知细线最大承受拉力为7mg。
(1)求匀强电场的电场强度;
(2)若小球能通过最高点,写出最高点时细线的拉力与x的关系式;
(3)若要使细线不断裂也不松弛,确定x的取值范围。
如图所示,在竖直方向上有两个用轻质弹簧相连接的物块,它们的质量分别为m1、m2,弹簧的劲度系数分别为k1、k2。开始时系统处于静止状态,上面劲度系数为k1的弹簧处于原长状态。现用竖直向上的力F缓慢的拉动上面弹簧的上端.求质量为m2的物块刚要离开地面时,上面劲度系数为k1的弹簧的上端被提起的距离x是多少?
如图所示,光滑匀质圆球的直径d=40cm,质量为M=20kg,悬线长L=30cm,正方形物块A的厚度b=10cm,质量为m=2kg,物块A与墙之间的动摩擦因数μ=0.2。现将物块A轻放于球和墙之间后放手,取g=10m/s2,求:
(1)墙对A的摩擦力为多大?
(2)施加一个与墙面平行的外力于物体A上,使物体A在未脱离圆球前贴着墙沿水平方向做匀速直线运动,求这个外力的大小。
如图所示,质量为m=2kg的物体A底部连接在竖直轻弹簧B的一端,弹簧B的另一端固定于水平面上,劲度系数为k1=200N/m。用细绳跨过定滑轮将物体A与另一根劲度系数为k2的轻弹簧C连接,此时A上端轻绳恰好竖直伸直。当弹簧C处在水平位置且未发生形变时,其右端点位于a位置。将弹簧C的右端点沿水平方向缓慢拉到b位置时,弹簧B对物体A的拉力大小恰好等于A的重力。已知ab=40cm,求:
(1)当弹簧C处在水平位置且未发生形变时,弹簧B的形变大小。
(2)该过程中物体A上升的高度为多少?劲度系数k2是多少?
(18分)如图所示,粗糙斜直轨道PA和两个光滑圆弧轨道、组成的S形轨道,斜轨道与圆弧轨道在A点光滑连接,B点是最低点,已知,圆弧轨道半径均为R,两圆弧交接处C、D之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略。斜轨道最高点P与水平面BQ的高度差为h=6.5R。从P点静止释放一个质量为m可视为质点的小球,小球沿S形轨道运动后从G点水平飞出,落到水平地面上,落点Q点到B点的距离为x=4R。不计空气阻力,重力加速度为g,求:
(1)小球从G点水平飞出时的速度多大?
(2)小球运动到圆形轨道最低点B点时对轨道的压力;
(3)小球与轨道PA间的动摩擦因数μ。
如图所示,在竖直平面内固定一光滑圆管轨道。质量为的小球从轨道顶端A点无初速释放,然后从轨道底端B点水平飞出落在某一坡面上,坡面呈抛物线形状,且坡面的抛物线方程为.已知B点离地面O点的高度为R,圆管轨道的半径也为R.(重力加速度为g,忽略空气阻力.)求:
(1)小球在B点对轨道的弹力;(2)小球落在坡面上的动能?
如图所示,竖直平面直角坐标系中,一半径为R的绝缘光滑管道位于其中,管道圆心坐标为(0,R),其下端点与x轴相切于坐标原点,其上端点与y轴交于C点,坐标为(0,2R)。在第二象限内,存在水平向右、范围足够大的匀强电场,场强大小为。在x≥R,y≥0范围内,有水平向左、范围足够大的匀强电场,场强大小为。现有一与x轴正方向夹角为450,足够长的绝缘斜面位于第一象限的电场中,斜面底端坐标为(R,0)。x轴上0≤x≤R范围内是水平光滑轨道,左端与管道下端相切,右端与斜面底端平滑连接。有一质量为m,带电量为+q的小球,从静止开始,由斜面上某点A下滑,通过水平光滑轨道(不计转角处能量损失),从管道下端点B进入管道(小球直径略小于管道内径,不计小球的电量损失)。试求:
(1)小球至少从多高处滑下,才能到达管道上端点C?要求写出此时小球出发点的坐标。
(2)在此情况下,小球通过管道最高点C受到的压力多大?方向如何?
如图所示,足够长光滑水平轨道与半径为R的光滑四分之一圆弧轨道相切。现从圆弧轨道的最高点由静止释放一质量为m的弹性小球A,当A球刚好运动到圆弧轨道的最低点时,与静止在该点的另一弹性小球B发生没有机械能损失的碰撞。已知B球的质量是A球的k倍,且两球均可看成质点。
(1)若碰撞结束的瞬间,A球对圆弧轨道最低点压力刚好等于碰前其压力的一半,求k的可能取值:
(2)若k已知且等于某一适当的值时,A、B两球在水平轨道上经过多次没有机械能损失的碰撞后,最终恰好以相同的速度沿水平轨道运动。求此种情况下最后一次碰撞A球对B球的冲量。
如图所示,水平桌面上有一轻弹簧,左端固定在A点,弹簧处于自然状态时其右端位于B点。水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R="0.8" m的圆环剪去了左上角135°的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R。用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点。用同种材料、质量为m2=0.2kg的物块将弹簧也缓慢压缩到C点释放,物块过B点后其位移与时间的关系为x=6t-2t2,物块从桌面右边缘D点飞离桌面后,由P点沿圆轨道切线落入圆轨道。g ="10" m/s2,求:
(1)DP间的水平距离;
(2)判断m2能否沿圆轨道到达M点;
(3)释放后m2在水平桌面上运动过程中克服摩擦力做的功。
如图,质量为的b球用长h的细绳悬挂于水平轨道BC的出口C处。质量为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。已知BC轨道距地面的高度为,悬挂b球的细绳能承受的最大拉力为2mg。试问:
(1)a与b球碰前瞬间,a的速度多大?
(2)a、b两球碰后,细绳是否会断裂?若细绳断裂,小球在DE水平面上的落点距C的水平距离是多少?若细绳不断裂,小球最高将摆多高?
如图所示,BCDG是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数μ=0.5,重力加速度为g.
(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,滑块到达与圆心O等高的C点时速度为多大?
(2)在(1)的情况下,求滑块到达C点时受到轨道的作用力大小;
(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
如图所示,在竖直平面内固定一个光滑圆管轨道,轨道半径为R。质量为m的小球从轨道顶端A点无初速释放,然后从轨道底端B点水平飞出落在某一坡面上,坡面呈抛物线形状,且坡面的抛物线方程为。已知B点离地面O点的高度也为R。(重力加速度为g,忽略空气阻力。)求:
(1)小球在B点对轨道的弹力? (2)小球落在坡面上的动能?
如图所示,x轴与水平传送带重合,坐标原点0在传送带的左端,传送带OQ长 L=8m,传送带顺时针速度V。=5m/s, —质量m=1kg的小物块轻轻放在传送带上xp="2m" 的P点,小物块随传送带运动到Q点后恰好能冲上光滑圆弧轨道的最高点N点。小物块与 传送带间的动摩擦因数μ.=0.5,重力加速度g= 10m/s2,求:
(1)N点的纵坐标;
(2)若将小物块轻放在传送带上的某些位置,小物块均能沿光滑圆弧轨道运动(小物块始终 在圆弧轨道运动不脱轨)到达纵坐标yM=0.25m的M点,求这些位置的横坐标范围。
如图,一个质量为m的小球(可视为质点)以某一初速度从A点水平抛出,恰好从圆管BCD的B点沿切线方向进入圆弧,经BCD从圆管的最高点D射出,恰好又落到B点.已知圆弧的半径为R且A与D在同一水平线上,BC弧对应的圆心角θ=60°,不计空气阻力.求:
(1)小球从A点做平抛运动的初速度v0的大小;
(2)在D点处管壁对小球的作用力N的大小及其方向;
(3)小球在圆管中运动时克服阻力做的功Wf.
如图所示,水平绝缘轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m。轨道所在空间存在水平向右的匀强电场,电场强度E=1.0×10 4N/C。现有一电荷量q=+1.0×10 -4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体运动到圆形轨道最低点B时的速度v B=5.0m/s。已知带电体与水平轨道间的动摩擦因数μ=0.50,重力加速度g="10m/s" 2。
求:(1)带电体运动到圆形轨道的最低点B时,圆形轨道对带电体支持力的大小;
(2)带电体在水平轨道上的释放点P到B点的距离;
(3)带电体第一次经过C点后,落在水平轨道上的位置到B点的距离。