如图,BC为半径等于R=竖直放置的光滑细圆管,O为细圆管的圆心,BO与竖直线的夹角为45°;在圆管的末端C连接一光滑水平面,水平面上一质量为M=1.5kg的木块与一轻质弹簧拴接,轻弹簧的另一端固定于竖直墙壁上.现有一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始即受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失.小球过后与木块发生完全非弹性碰撞(g=10m/s2).求:
(1)小球在A点水平抛出的初速度v0;
(2)在圆管运动中圆管对小球的支持力N;
(3)弹簧的最大弹性势能EP.
一列士兵的队伍长120m,正以某一速度做匀速直线运动,因有紧急情况需要通知排头士兵,一名通讯员以不变的速率跑步从队尾赶到队头,又从队头返回队尾,在此过程中队伍前进了288m,求通讯员在这段往返时间内共走了多少m?
如图所示,一质量为M=5.0kg,长度L=4m的平板车静止在水平地面上,距离平板车右侧S=16.5m处有一固定障碍物.障碍物上固定有一电动机A。另一质量为m=2.0kg可视为质点的滑块,以v0=8m/s的水平初速度从左端滑上平板车,同时电动机A对平板车施加一水平向右、大小为22.5N的恒力F.1s后电动机A突然将功率变为P=52.5w并保持不变,直到平板车碰到障碍物停止运动时,电动机A也同时关闭。滑块沿水平飞离平板车后,恰能无碰撞地沿圆弧切线从B点滑入光滑竖直圆弧轨道,并沿轨道下滑.已知平板车间与滑块的动摩擦因数μ1=0.5,平板车与地面的动摩擦因数μ2=0.25,圆弧半径为R=1.0m,圆弧所对的圆心角∠BOD=θ=1060,g取10m/s2,sin53°=0.8,cos53°=0.6,不计空气阻力,求:
(1)0 1s时间内,滑块相对小车运动的位移x;
(2)电动机A做功W;
(3)滑块运动到圆弧轨道最低点C时对轨道压力的大小FN.
如图所示,物体A放在足够长的木板B上,木板B静止于水平面。t=0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零,加速度aB=1.0m/s2的匀加速直线运动。已知A的质量mA和B的质量mB均为2.0kg,A、B之间的动摩擦因数μ1=0.05,B与水平面之间的动摩擦因数μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g取10m/s2。求
(1)物体A刚运动时的加速度aA
(2)t1=1.0s时,电动机的输出功率P;
(3)若t1=1.0s时,将电动机的输出功率立即调整为P1=5W,并在以后的运动过程中始终保持这一功率不变,t2=3.8s时物体A的速度为1.2m/s。则在t1=1.0s到t2=3.8s这段时间内木板B的位移为多少?
如图所示,一固定的l/4圆弧轨道,半径为l.25m,表面光滑,其底端与水平面相切,且与水平面右端P点相距6m。轨道的下方有一长为l.5m的薄木板,木板右侧与轨道右侧相齐。现让质量为1kg的物块从轨道的顶端由静止滑下,当物块滑到轨道底端时,木板从轨道下方的缝隙中冲出,此后木板在水平推力的作用下保持6m/s的速度匀速运动,物块则在木板上滑动。当木板右侧到达P点时,立即停止运动并被锁定,物块则继续运动,最终落到地面上。已知P点与地面相距l.75m,物块与木板间的动摩擦因数为0.1,取重力加速度g=10m/s2,不计木板的厚度和缝隙大小,求:
(1)物块滑到弧形轨道底端受到的支持力大小;
(2)物块离开木板时的速度大小;
(3)物块落地时的速度大小及落地点与P点的水平距离。
如图所示,半径r = 0.2m的1/4光滑圆弧形槽底端B与水平传带平滑相接,传送带以v1=4m/s的速率顺时针转动, 其右端C点正上方悬挂一质量为m=0.1kg的物块b, BC距离L=1.25m,一质量为m=0.1kg物块a从A点无初速滑下,经传送带后与物块b相碰并粘在一起,在a、b碰撞瞬间绳子断开,a、b沿水平方向飞出,已知滑块与传送带间的动摩擦因数μ="0.2," C点距水平面的高度为h="0.8m," a、b两物块均视为质点,不计空气阻力,g取10m/s2,
求:(1)滑块a到达底端B时对槽的压力
(2)滑块a到达传送带C点的速度大小
(3)求滑块a、b的落地点到C点的水平距离
如图所示,一根长为L的绝缘轻绳的一端固定在O点,另一端连接着一个带正电的小球,小球可视为质点,其质量为m,电荷量为q。在O点正上方和正下方距O点L处,各固定一个绝缘弹性挡板A和B,两个挡板尺寸很小,均竖直放置。此装置处在一个竖直匀强电场中,电场强度的大小为,方向最初竖直向上。现将小球拉到O点右侧同一高度且距O点L处,给它一个竖直向上的初速度V0= 。此后小球在A、B之间的右侧区域竖直面内做圆周运动,并不时与A、B挡板碰撞,在小球与A、B挡板碰撞时,通过两挡板上安装的传感器和控制电路,控制电场方向在碰后瞬间反向,不计碰撞中的能量损失,重力加速度为g,求:
(1)小球与A、B挡板第一次碰前瞬间,绳中的拉力分别为多少?
(2)若轻绳可以承受的最大拉力为50mg,则在绳断之前,小球与B挡板碰撞了多少次?
如图所示,一个质量m=1kg的长木板静止在光滑的水平面上,并与半径为R=1.8m的光滑圆弧形固定轨道接触(但不粘连),木板的右端到竖直墙的距离为s=0.08m;另一质量也为m的小滑块从轨道的最高点由静止开始下滑,从圆弧的最低点A滑上木板。设长木板每次与竖直墙的碰撞时间极短且无机械能损失。木板的长度可保证物块在运动的过程中不与墙接触。已知滑块与长木板间的动摩擦因数=0.1,g取10m/s2。试求:
(1)滑块到达A点时对轨道的压力大小;
(2)当滑块与木板达到共同速度()时,滑块距离木板左端的长度是多少?
某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10m/s2)
如图所示,倾斜轨道AB的倾角为37o,CD、EF轨道水平,AB与CD通过光滑圆弧管道BC连接,CD右端与竖直光滑圆周轨道相连。小球可以从D进入该轨道,沿轨道内侧运动,从E滑出该轨道进入EF水平轨道。小球由静止从A点释放,已知AB长为5R,CD长为R,重力加速度为g,小球与斜轨AB及水平轨道CD、EF的动摩擦因数均为0.5,sin37o=0.6,cos37o=0.8,圆弧管道BC入口B与出口C的高度差为1.8R。求:
(1)小球滑到斜面底端C时速度的大小。
(2)小球对刚到C时对轨道的作用力。
(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径R’应该满足什么条件?若R’=2.5R,小球最后所停位置距D(或E)多远?
注:在运算中,根号中的数值无需算出。
如图所示,圆环A的质量 m1=10kg,被销钉固定在竖直光滑的杆上,杆固定在地面上,A与定滑轮等高,A与定滑轮的水平距离L=3m,不可伸长的细线一端系在A上,另一端通过定滑轮系系在小物体B上,B的质量m2=2kg,B的另一侧系在弹簧上,弹簧的另一端系在固定在斜面底端的挡板C上,弹簧的劲度系数k=40N/m,斜面的倾角θ=30°,B与斜面的摩擦因数μ=/3,足够长的斜面固定在地面上,B受到一个水平向右的恒力F作用,F=20N,开始时细线恰好是伸直的,但未绷紧,B是静止的,弹簧被压缩。拔出销钉,A开始下落,当A下落h=4m时,细线断开、B与弹簧脱离、恒力F消失,不计滑轮的摩擦和空气阻力。问
(1)销钉拔出前,画出物体B的受力示意图,此时弹簧的压缩量
(2)当A下落h=4m时,A、B两个物体的速度大小关系?
(3)B在斜面上运动的最大距离
如图所示,水平地面上竖直固定一个光滑的、半径R=0.45m的1/4圆弧轨道,A、B分别是圆弧的端点,圆弧B点右侧是光滑的水平地面,地面上放着一块足够长的木板,木板的上表面与圆弧轨道的最低点B等高,可视为质点的小滑块P1和P2的质量均为m=0.20kg,木板的质量M=4m,P1和P2与木板上表面的动摩擦因数分别为=0.20和=0.50,最大静摩擦力近似等于滑动摩擦力;开始时木板的左端紧靠着B,P2静止在木板的左端,P1以v0=4.0m/s的初速度从A点沿圆弧轨道自由滑下,与P2发生弹性碰撞后,P1处在木板的左端,取g=10m/s2。求:
(1)P1通过圆弧轨道的最低点B时对轨道的压力;
(2)P2在木板上滑动时,木板的加速度为多大?
(3)已知木板长L=2m,请通过计算说明P2会从木板上掉下吗?如能掉下,求时间?如不能,求共速?
如图所示,斜面倾角为45°,从斜面上方A点处由静止释放一个质量为m的弹性小球,在B点处和斜面碰撞,碰撞后速度大小不变,方向变为水平,经过一段时间在C点再次与斜面碰撞。已知AB两点的高度差为h,重力加速度为g,不考虑空气阻力。求:
(1)小球在AB段运动过程中重力做功的平均功率P;
(2)小球落到C点时速度的大小。
如图所示,半径R="0.80" m的光滑圆弧轨道固定在水平面上,轨道上方A点有一质量为m=1.Okg的小物块.小物块由静止开始下落后打在圆轨道上B点但未反弹,在瞬间碰撞过程中,小物块沿半径方向的分速度立刻减为零,而沿切线方向的分速度不变.此后,小物块将沿圆弧轨道滑下.已知A、B两点到圆心0的距离均为R,与水平方向夹角均为θ=30°,C点为圆弧轨道末端,紧靠C点有一固定的长木板Q,木板上表面与圆弧轨道末端切线相平,小物块与木板间的动摩擦因数µ=0.30,取g=10m/s2.求:
(1)小物块刚到达B点时的速度vB;
(2)小物块沿圆弧轨道到达C点时对轨道的压力FC的大小;
(3)木板长度L至少为多大时小物块才不会滑出长木板.
如图所示,在水平面上固定一个高度为h1="0.55" m的平台ABCD,其中AB部分是L=1.6m的水平轨道,BCD为光滑的弯曲轨道,轨道最高处C处可视为半径为r=4m的小圆弧,现一个质量为m ="1kg" 的滑块以初速度v0=5m/s从A点向B点运动,当滑块滑到平台顶点C处后作平抛运动,落到水平地面且落地点的水平射程为x=0.8m,轨道顶点距水平面的高度为h2 =0.8m,(平抛过程中未与平台相撞)(取g=10m/s2)求:
(1)滑块在轨道顶点处对轨道的压力?
(2)滑块与木板间的动摩擦因数μ?