如图所示,半径R =" 0.8" m的光滑绝缘导轨固定于竖直平面内,加上某一方向的匀强电场时,带正电的小球沿轨道内侧做圆周运动。圆心O与A点的连线与竖直成一角度θ,在A点时小球对轨道的压力FN="120" N,此时小球动能最大。若小球的最大动能比最小动能多32 J,且小球能够到达轨道上的任意一点(不计空气阻力)。则:
⑴小球的最小动能是多少?
⑵小球受到重力和电场力的合力是多少?
⑶现小球在动能最小的位置突然撤去轨道,并保持其他量都不变,若小球在0.04 s后的动能与它在A点时的动能相等,求小球的质量。
如图,滑雪运动员由静止开始经过一段1/4圆弧形滑道滑行后,从弧形滑道的最低点O点水平飞出,经过3s时间落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员与滑雪板的总质量巩=50kg.不计空气阻力,求:(已知sin37°=0.60,cos37°=0.80,g取10m/s2,忽略弧形滑道的摩擦)
(1)在O点时滑雪板对滑道的压力大小;
(2)运动员经过O点时的速度大小.
(14分)如图所示,光滑圆弧轨道最低点与光滑斜面在B点用一段光滑小圆弧平滑连接,可认为没有能量的损失,圆弧半径为R="0.5" m,斜面的倾角为450,现有一个可视为质点、质量为m="0.1" kg的小球从斜面上A点由静止释放,通过圆弧轨道最低点B时对轨道的压力为6 N。以B点为坐标原点建立坐标系如图所示(g="10" m/s2)。求:
(1)小球最初自由释放位置A离最低点B的高度h;
(2)小球运动到C点时对轨道的压力的大小;
(3)小球从离开C点至第一次落回到斜面上,落点的坐标是多少?
如图所示,轻杆BC的C点用光滑铰链与墙壁固定,杆的B点通过水平细绳AB使杆与竖直墙壁保持30°的夹角.若在B点系一细绳BD,其下端悬挂一质量m=30kg的重物,g取10m/s2.试求:轻杆BC和绳AB所受弹力的大小.
如图所示,质量为M=0.6kg的物体静止在水平圆形转台上。轻绳的一端系着物体,穿过转台圆心的光滑小孔吊着质量为m=0.3kg的物体,M与小孔的距离为r=0.2m,M与水平面间的动摩擦因数为0.3,现使物体M随转台绕过圆心的竖直轴匀速转动,(g取10m/s2)求:
(1)角速度ω为多大时,物体M与平台之间恰好没有摩擦力?
(2)角速度ω=6rad/s时,物体M受到的摩擦力的大小和方向?
在许多建筑工地经常使用打夯机将桩料打入泥土中以加固地基。打夯前先将桩料扶起、使其缓慢直立进入泥土中,每次卷扬机都通过滑轮用轻质钢丝绳将夯锤提升到距离桩顶h0=5 m处再释放,让夯锤自由下落,夯锤砸在桩料上并不弹起,而随桩料一起向下运动。(碰撞时间极短时,一动碰一静,碰后同速满足mv=(M+m)v共)设夯锤和桩料的质量均为m=500 kg,泥土对桩料的阻力为f=kh,其中常数k=2. 0×104 N/m,h是桩料深入泥土的深度。卷扬机使用电动机来驱动,卷扬机和电动机总的工作效率为η=95%,每次卷扬机需用20 s的时间提升夯锤。提升夯锤时忽略加速和减速的过程,不计夯锤提升时的动能,也不计滑轮的摩擦。夯锤和桩料的作用时间极短,g取10m/s2,求:
(1)在提升夯锤的过程中,电动机的输入功率;(结果保留2位有效数字)
(2)打完第一夯后,桩料进入泥土的深度。(可用根号表示)
如图,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处。质量也为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。已知BC轨道距地面有一定的高度,悬挂b球的细绳能承受的最大拉力为2.8mg。试问:
①a与b球碰前瞬间的速度多大?
②a、b两球碰后,细绳是否会断裂?(要求通过计算回答)
如图所示,已知半径分别为R和r的甲、乙两个光滑的圆形轨道安置在同一竖直平面内,甲轨道左侧又连接一个光滑的轨道,两圆形轨道之间由一条水平轨道CD相连.一小球自某一高度由静止滑下,先滑过甲轨道,通过动摩擦因数为μ的CD段,又滑过乙轨道,最后离开.若小球在两圆轨道的最高点对轨道压力都恰好为零.试求:
⑴释放小球的高度h.
⑵水平CD段的长度.
为测量小铜块与瓷砖表面间的动摩擦因数,一同学将贴有标尺的瓷砖的一端放在水平桌面上,形成一倾角为 α的斜面(已知sin α=0.34,cos α=0.94),小铜块可在斜面上加速下滑,如图所示。该同学用手机拍摄小铜块的下滑过程,然后解析视频记录的图像,获得5个连续相等时间间隔(每个时间间隔Δ T=0.20 s)内小铜块沿斜面下滑的距离 s i( i=1,2,3,4,5),如下表所示。
s 1 |
s 2 |
s 3 |
s 4 |
s 5 |
5.87cn |
7.58cm |
9.31cm |
11.02cm |
12.74cm |
由表中数据可得,小铜块沿斜面下滑的加速度大小为_______m/s 2,小铜块与瓷砖表面间的动摩擦因数为_________。(结果均保留2位有效数字,重力加速度大小取9.80 m/s 2)
如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.
(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;
(2)要使纸板相对砝码运动,求所需拉力的大小;
(3)本实验中,m1=0.5kg,m2=0.1kg,μ=0.2,砝码与纸板左端的距离d=0.1m,取g=10m/s2.若砝码移动的距离超过l=0.002m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?
如图所示,水平轨道MN与竖直光滑半圆轨道相切于N点,轻弹簧左端固定在轨道的M点,将一质量为m=1kg的小物块靠在弹簧右端并压缩至O点,此时弹簧储有弹性势能Ep,现将小物块无初速释放,小物块恰能通过轨道最高点B,此后水平飞出再落回到水平面。已知ON的距离L=3.0m,小物块与水平轨道间的动摩擦因数μ=0.2,圆轨道半径R=0.4m,g取10 m/s2。求:
(1)小物块通过B点抛出后,落地点距N的水平距离x;
(2)弹簧储有的弹性势能Ep。
如图所示,质量为M=50kg的人通过光滑的定滑轮让质量为m=10kg的重物从静止开始向上做匀加速运动,并在2s内将重物提升了4m.若绳与竖直方向夹角为θ=370,求:(sin37°=0.6,cos37°=0.8,g=10m/s2)
(1)物体上升的加速度多大?
(2)人对绳子的拉力为多大?
(3)地面对人的摩擦力和人对地面的压力分别多大?
如图所示,重力为G1=8N的砝码悬挂在绳PA和PB的结点上,PA偏离竖直方向37°角,PB沿水平方向且连在重力为G2=100N的木块上,木块静止于倾角为37°的斜面上,试求:
(1)PA、PB绳上的拉力分别为多大?
(2)木块与斜面间的摩擦力;
(3)木块所受斜面的弹力.
如图,质量为M=5kg的斜劈形物体放在水平地面上,质量为m=1kg的物块以某大小为10m/s的初速度沿斜劈的粗糙斜面向上滑动,至速度为零后返回,这一过程中斜劈始终保持静止。已知斜劈的斜面倾角为37º,物体与斜劈的动动摩擦因数为μ=0.5,重力加速度g=10m/s2。试求:
(1)物体从开始上滑到到最高点所用时间。
(2)物体沿斜劈下滑的过程中,斜劈对地面的压力大小。
(3)物体沿斜劈上滑的过程中,地面施加给斜劈的静摩擦力大小和方向。
如图所示,光滑的水平面AB与半径R=0.4m的光滑竖直半圆轨道BCD在B点相切,D点为半圆轨道最高点,A点的右侧连接一粗糙的水平面。用细线连接甲、乙两物体,中问夹一轻质压缩弹簧,弹簧与甲、乙两物体不拴接,甲的质量朋=4kg,乙的质量=5kg,甲、乙均静止。若固定乙,烧断细线,甲离开弹簧后经过B点进入半圆轨道,过D点时对轨道的压力恰好为零。取g=10m/s2,甲、乙两物体均可看作质点,求:
(1)甲离开弹簧后经过B点时的速度的大小;
(2)在弹簧压缩量相同的情况下,若固定甲,烧断细线,乙物体离开弹簧后从A点进入动摩擦因数=0.4的粗糙水平面,则乙物体在粗糙水平面运动的位移S。