在如图所示的平面直角坐标系内,x轴水平、y轴竖直向下。计时开始时,位于原点处的沙漏由静止出发,以加速度a沿x轴匀加速度运动,此过程中沙从沙漏中漏出,每隔相等的时间漏出相同质量的沙。已知重力加速度为g,不计空气阻力以及沙相对沙漏的初速度。
(1)求t0时刻漏出的沙在t(t> t0)时刻的位置坐标;
(2)t时刻空中的沙排成一条曲线,求该曲线方程。
如图所示,竖直平面内四分之一光滑圆弧轨道AP和水平传送带PC相切于P点,圆弧轨道的圆心为O,半径为R=5m。一质量为m=2kg的小物块从圆弧顶点由静止开始沿轨道下滑,再滑上传送带PC,传送带可以速度v=5m/s沿顺时针或逆时针方向的传动。小物块与传送带间的动摩擦因数为,不计物体经过圆弧轨道与传送带连接处P时的机械能损失,重力加速度为g=10m/s2。
(1)求小物体滑到P点时对圆弧轨道的压力;
(2)若传送带沿逆时针方向传动,物块恰能滑到右端C,问传送带PC之间的距离L为多大:
光滑水平面上有一质量为M="2" kg的足够长的木板,木板上最有右端有一大小可忽略、质量为m=3kg的物块,物块与木板间的动摩擦因数,且最大静摩擦力等于滑动摩擦力。开始时物块和木板都静止,距木板左端L=2.4m处有一固定在水平面上的竖直弹性挡板P。现对物块施加一水平向左外力F=6N,若木板与挡板P发生撞击时间极短,并且撞击时无动能损失,物块始终未能与挡板相撞,求:
(1)木板第一次撞击挡板P时的速度为多少?
(2)木板从第一次撞击挡板P到运动至右端最远处所需的时间及此时物块距木板右端的距离X为多少?
(3)木板与挡板P会发生多次撞击直至静止,而物块一直向左运动。每次木板与挡板P撞击前物块和木板都已相对静止,最后木板静止于挡板P处,求木板与物块都静止时物块距木板最右端的距离X为多少?
电视机中显像管(抽成真空玻璃管)的成像原理主要是靠电子枪产生高速电子束,并在变化的磁场作用下发生偏转,打在荧光屏不同位置上发出荧光而形成像。显像管的原理示意图(俯视图)如图甲所示,在电子枪右侧的偏转线圈可以产生使电子束沿纸面发生偏转的磁场,偏转的磁场可简化为由通电螺线管产生的与纸面垂直的磁场,该磁场分布的区域为圆形(如图乙所示),其磁感应强度B=μNI,式中μ为磁常量,N为螺线管线圈的匝数,I为线圈中电流的大小。由于电子的速度极大,同一电子穿过磁场过程中可认为磁场没有变化,是稳定的匀强磁场。
已知电子质量为m,电荷量为e,电子枪加速电压为U,磁常量为μ,螺线管线圈的匝数N,偏转磁场区域的半径为r,其圆心为O点。当没有磁场时,电子束通过O点,打在荧光屏正中的M点,O点到荧光屏中心的距离OM=L。若电子被加速前的初速度和所受的重力、电子间的相互作用力以及地磁场对电子束的影响均可忽略不计,不考虑相对论效应及磁场变化所激发的电场对电子束的作用。
(1)求电子束经偏转磁场后打到荧光屏上P点时的速率;
(2)若电子束经偏转磁场后速度的偏转角θ=60°,求此种情况下电子穿过磁场时,螺线管线圈中电流I0的大小;
(3)当线圈中通入如图丙所示的电流,其最大值为第(2)问中电流的0.5倍。求电子束打在荧光屏上发光所形成“亮线”的长度。
微波实验是近代物理实验室中的一个重要部分.反射式速调管是一种结构简单、实用价值较高的常用微波器件之一,它是利用电子团与场相互作用在电场中发生振荡来产生微波,其振荡原理与下述过程类似.如图1所示,在虚线MN两侧分布着方向平行于x轴的电场,其电势φ随x的分布可简化为如图2所示的折线.一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动.已知带电微粒质量m=1.0×10﹣20 kg,带电荷量q=﹣1.0×10﹣9 C,A点距虚线MN的距离d1=1.0cm,不计带电微粒的重力,忽略相对论效应.求:
(1)B点距虚线MN的距离d2;
(2)带电微粒在A、B之间震荡的周期T.
如图所示,一木箱静止、在长平板车上,某时刻平板车以a=2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v=9m/s时改做匀速直线运动,己知木箱与平板车之间的动脒擦因数μ=0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。求:
(1)车在加速过程中木箱运动的加速度的大小;
(2)木箱做加速运动的时间和位移的大小;
(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。
如图所示,A、B两物块用一根轻绳跨过定滑轮相连,不带电的B、C通过一根轻弹簧拴接在一起,且处于静止状态,其中A带负电,电荷量大小为q。质量为2 m的A静止于斜面的光滑部分(斜面倾角为37°,其上部分光滑,下部分粗糙且足够长,粗糙部分的摩擦系数为μ,且μ=tan300,上方有一个平行于斜面向下的匀强电场),通过细绳与B相连接,此时与B相连接的轻弹簧恰好无形变。弹簧劲度系数为k。B、C质量相等,均为m,不计滑轮的质量和摩擦,重力加速度为g。
(1)电场强度E的大小为多少?
(2)现突然将电场的方向改变 180°,A开始运动起来,当C刚好要离开地面时(此时 B还没有运动到滑轮处,A刚要滑上斜面的粗糙部分),B的速度大小为v,求此时弹簧的弹性势能EP。
(3)若(2)问中A刚要滑上斜面的粗糙部分时,绳子断了,电场恰好再次反向,请问A再经多长时间停下来?
如图所示,足够长的木板B静止在光滑水平地面上.小滑块A静止放在木板B的左端,已知mA=1kg、mB=2kg、滑块A与木板B间的动摩擦因数,现对小滑块A施加一个竖直平面内斜向右上方大小为10N的外力F,且F作用3s后撤去.若图中
,问:
(1)施加外力F时,滑块A及木板B加速度大小分别为多少?
(2)最终滑块A、木板B会一起在光滑水平面上做匀速运动,它们匀速运动的速度为多少?
(3)整个过程A、B组成的系统由于摩擦产生的内能是多少?
如图传送带以v1的速度匀速运动,物体以v2的速度从B点滑上传送带,已知A、B之间的传送带长度为L,物体与传送带之间的动摩擦因素为μ,则以下判断正确的是
A.当v2>v1时,物体一定从左端离开传送带
B.当v2>时,物体一定从左端离开传送带
C.物体从右端B点离开传送带时的速度一定等于v1
D.物体从右端B点离开传送带时的速度一定不会大于v2
如图,在粗糙水平台阶上静止放置一质量m=0.5kg的小物块,它与水平台阶表面的动摩擦因数μ=0.5,且与台阶边缘O点的距离s=5m.在台阶右侧固定了一个圆弧挡板,圆弧半径R=1m,圆弧的圆心也在O点.今以O点为原点建立平面直角坐标系.现用F=5N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.
(1)若小物块恰能击中挡板上的P点(OP与水平方向夹角为37°),求其离开O点时的速度大小;
(2)为使小物块击中挡板,求拉力F作用的最短时间;
(3)改变拉力F的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值.
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
现代化的生产流水线大大提高了劳动效率,如下图为某工厂生产流水线上的水平传输装置的俯视图,它由传送带和转盘组成。物品从A处无初速、等时间间隔地放到传送带上,运动到B处后进入匀速转动的转盘随其一起运动(无相对滑动),到C处被取走装箱。已知A、B的距离L =" 9.0" m,物品在转盘上与转轴O的距离R =" 3.0" m、与传送带间的动摩擦因数μ1 = 0.25,传送带的传输速度和转盘上与O相距为R处的线速度均为v =" 3.0" m/s,取g =" 10" m/s2。问:
(1)物品从A处运动到B处的时间t;
(2)若物品在转盘上的最大静摩擦力可视为与滑动摩擦力大小相等,则物品与转盘间的动摩擦因数μ2至少为多大?
(3)若物品的质量为0.5 kg,每输送一个物品从A到C,该流水线为此至少多做多少功?
如图所示,电阻不计、间距L=1m、足够长的光滑金属导轨ab、cd与水平面成θ=37°角,导轨平面矩形区域efhg内分布着磁感应强度的大小B=1T,方向垂直导轨平面向上的匀强磁场,边界ef、gh之间的距离D=1.4m。现将质量m=0.1kg、电阻的导体棒P、Q相隔Δt=0.2s先后从导轨顶端由静止自由释放,P、Q在导轨上运动时始终与导轨垂直且接触良好,P进入磁场时恰好匀速运动,Q穿出磁场时速度为2.8m/s。已知重力加速度g=10m/s2,sin37°=0.6,求
(1)导轨顶端与磁场上边界ef之间的距离S;
(2)从导体棒P释放到Q穿出磁场的过程,回路中产生的焦耳热Q总。
如图所示,直角坐标系xOy位于竖直平面内,x轴与绝缘的水平面重合,在y轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m2=8×10-3 kg的不带电小物块静止在原点O,A点距O点l=0.045 m,质量m1=1×10-3 kg的带电小物块以初速度v0=0.5 m/s从A点水平向右运动,在O点与m2发生正碰并把部分电量转移到m2上,碰撞后m2的速度为0.1 m/s,此后不再考虑m1、m2间的库仑力。已知电场强度E=40 N/C,小物块m1与水平面的动摩擦因数为μ=0.1,取g=10 m/s2,求:
(1)碰后m1的速度;
(2)若碰后m2做匀速圆周运动且恰好通过P点,OP与x轴的夹角θ=30°,OP长为lOP=0.4 m,求磁感应强度B的大小;
(3)其他条件不变,若改变磁场磁感应强度B′的大小,使m2能与m1再次相碰,求B′的大小。
下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。某地有一倾角为(
)的山坡C,上面有一质量为
的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图所示。假设某次暴雨中,A浸透雨水后总质量也为
(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数
减小为
,B、C间的动摩擦因数
减小为
,A、B开始运动,此时刻为计时起点;在第
末,B的上表面突然变为光滑,
保持不变。已知A开始运动时,A离B下边缘的距离
,C足够长,设最大静摩擦力等于滑动摩擦力。取重力加速度大小
。求:
(1)在时间内A和B加速度的大小;
(2)A在B上总的运动时间。