在一次大气科考活动中,探空气球以8 m/s的速度匀速竖直上升,某时刻从气球上脱落一个物体,经16s到达地面。求物体刚脱离气球时气球距离地面的高度。(g取10m/s2)
翼型降落伞有很好的飞行性能。它被看作飞机的机翼,跳伞运动员可方便地控制转弯等动作。其原理是通过对降落伞的调节,使空气升力和空气摩擦力都受到影响。已知:空气升力F1与飞行方向垂直,大小与速度的平方成正比,F1=C1v2;空气摩擦力F2与飞行方向相反,大小与速度的平方成正比,F2=C2v2。其中C1、C2相互影响,可由运动员调节,满足如图b所示的关系。试求:
(1)图a中画出了运动员携带翼型伞跳伞后的两条大致运动轨迹。试对两位置的运动员画出受力示意图并判断,①、②两轨迹中哪条是不可能的,并简要说明理由;
(2)若降落伞最终匀速飞行的速度v与地平线的夹角为α,试从力平衡的角度证明:tanα=C2/C1;
(3)某运动员和装备的总质量为70kg,匀速飞行的速度v与地平线的夹角α约20°(取tan20°=4/11),匀速飞行的速度v多大?(g取10m/s2,结果保留3位有效数字)
小明同学乘坐京石“和谐号”动车,发现车厢内有速率显示屏。当动车在平直轨道上经历匀加速、匀速与再次匀加速运行期间,他记录了不同时刻的速率,进行换算后数据列于表格中。在0~600s这段时间内,求:
(1)动车两次加速的加速度大小;
(2)动车位移的大小。
如图是建筑工地上常用的一种“深穴打夯机”,电动机带动两个滚轮匀速转动将夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,将夯杆释放,夯杆在自身重力作用下,落回深坑,夯实坑底,然后两个滚轮再次压紧,夯杆被提上来,如此周而复始。已知两个滚轮边缘的线速度恒为v=4m/s,滚轮对夯杆的正压力FN=2×104N,滚轮与夯杆间的动摩擦因数μ=0.3,夯杆的质量m=1×103kg,坑深h=6.4m,假设在打夯的过程中坑的深度变化不大,取g="10" m/s2.求:
(1)每个打夯周期中,电动机对夯杆所做的功;
(2)每个打夯周期中,滚轮与夯杆间因摩擦产生的热量;
(3)打夯周期。
金属硬杆轨道“ABCDEFGHIP”固定置于竖直平面内,CDE、FGH两半圆形轨道半径分别为、,足够长的PI、AB直轨与水平均成θ=37°,一质量为m的小环套在AB杆上,环与BC、EF、HI水平直杆轨道间的动摩擦因数均为μ=0.1,其中BC=、EF=、HI=,其他轨道均光滑,轨道拐弯连接处也光滑,环通过连接处时动能损失忽略不计,现环在AB杆上从距B点处的地方无初速释放.已知sin37°=0.6,试求:
(1)从释放到第一次到达B所用的时间;
(2)第一次过小圆道轨最高点D时,环对轨道的作用力;
(3)小环经过D的次数及环最终停在什么位置?
2004年1月25日,继“勇气”号之后,“机遇”号火星探测器再次成功登陆火星.在人类成功登陆火星之前,人类为了探测距离地球大约3.O×105km的月球,也发射了一种类似四轮小车的月球探测器.它能够在自动导航系统的控制下行走,且每隔10 s向地球发射一次信号.探测器上还装着两个相同的减速器(其中一个是备用的),这种减速器可提供的最大加速度为5 m/s2.某次探测器的自动导航系统出现故障,从而使探测器只能匀速前进而不再能自动避开障碍物.此时地球上的科学家必须对探测器进行人工遥控操作.下表为控制中心的显示屏的数据:
收到信号时间 |
与前方障碍物距离(单位:m) |
9:1020 |
52 |
9:1030 |
32 |
发射信号时间 |
给减速器设定的加速度(单位:m/s2) |
9:1033 |
2 |
收到信号时间 |
与前方障碍物距离(单位:m) |
9:1040 |
12 |
已知控制中心的信号发射与接收设备工作速度极快.科学家每次分析数据并输入命令最少需要3 s.问:
(1)经过数据分析,你认为减速器是否执行了减速命令?
(2)假如你是控制中心的工作人员,应采取怎样的措施?加速度需满足什么条件?请计算说明.
一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动.有一台发出细光束的激光器装在小转台M上,到轨道距离MN为d=10m,如图1-1-3所示,转台匀速转动,使激光束在水平面内扫描,扫描一周的时间T=60s,光束转动方向如图中箭头所示,当光束与MN的夹角为450时,光束正好射到小车上.如果再经过=2.5s光束又射到小车上,则小车的速度为多少?(结果保留二位有效数字)