高中数学

两数的等差中项是

A. B.— C. D.
来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列的前项和为,点均在函数的图象上
(1)求数列的通项公式
(2)若数列的首项是1,公比为的等比数列,求数列的前项和

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知等比数列{}中=1,则前3项的和的取值范围是          (   )

A. B. C. D.
来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知,,则                     

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知等差数列的前项和为,若,则等于                                 (   )

A.10 B.19 C.20 D.39
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,求证:
(3)设为数列的前项和,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在数列{an}中,a1=2,a17=66,通项公式是项数n的一次函数.
(1)求数列{an}的通项公式; 
(2)88是否是数列{an}中的项.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);如果n是奇数,则将它乘3加1(即),不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,我们可以得到一个数列:6,3,10,5,16,8,4,2,1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:
(1)如果,则按照上述规则施行变换后的第8项为           
(2)如果对正整数(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则的所有不同值的个数为           

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

等比数列的公比为2, 且前4项之和等于1, 那么前8项之和等于        

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知各项均为正数的等比数列=5,=10,则=:

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

数列1,,…,,….是(  )

A.递增数列 B.递减数列 C.常数列 D.摆动数列
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

Sn是数列{an}的前n项和,则“Sn是关于n的二次函数”是“数列{an}为等差数列”的(  )

A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知是等比数列,若,且,则          

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列的前项和为,    且与2的等差中项,数列中,,点在直线上。
(Ⅰ) 求数列的通项公式
(Ⅱ) 设,求数列的前n项和

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

数列各项均为正数的等比数列,是等差数列,且,则有

A. B.
C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学一阶、二阶线性常系数递归数列的通项公式试题