已知抛物线方程 y 2 = 4 x , F 为焦点, P 为抛物线准线上一点, Q 为线段 PF 与抛物线的交点,定义: d ( P ) = | PF | | FQ | .
(1)当 P ( - 1 , - 8 3 ) 时,求 d ( P ) ;
(2)证明:存在常数 a ,使得 2 d ( P ) = | PF | + a ;
(3) P 1 , P 2 , P 3 为抛物线准线上三点,且 | P 1 P 2 | = | P 2 P 3 | ,判断 d ( P 1 ) + d ( P 3 ) 与 2 d ( P 2 ) 的关系.
已知椭圆 C : x 2 a 2 + y 2 b 2 = 1 的右焦点为 ( 1 , 0 ) ,且经过点 A ( 0 , 1 ) .
(Ⅰ)求椭圆 C的方程;
(Ⅱ)设 O为原点,直线 l : y = kx + t ( t ≠ ± 1 ) 与椭圆 C交于两个不同点 P, Q,直线 AP 与 x轴交于点 M,直线 AQ 与 x轴交于点 N,若 | OM | · | ON | = 2 ,求证:直线 l经过定点.