如图,在直角坐标系xoy中,点M(0,1)处不断向+y方向发射出大量质量为m、带电量为-q的粒子,粒子的初速度大小广泛分布于零到v0之间。已知这些粒子此后所经磁场的磁感应强度大小为B,方向垂直于纸面向里,所有粒子都以+x方向穿过b区域,都沿-y的方向通过点N(3,0)。
(1)通过计算,求出符合要求的磁场范围的最小面积;
(2)若其中速度为k1v0和k2v0的两个粒子同时到达N点(1>k1>k2>0),求二者发射的时间差。
如图所示,直线MN下方无磁场,上方空间存在两个匀强磁场I和II,其分界线是半径为R的半圆弧,I和II的磁场方向相反且垂直于纸面,磁感应强度大小都为B。现有一质量为m、电荷量为q的带负电微粒从P点沿PM方向向左侧射出,不计微粒的重力。
(1)若微粒在磁场I中,做完整的圆周运动,其周期多大?
(2)若微粒从P点沿PM方向向左射出后直接从分界线的A点沿AO方向进入磁场II并打到Q点,求微粒的运动速度大小;
(3)若微粒从P点沿PM方向向左侧射出,最终能到达Q点,求其速度满足的条件。
两块平行金属板MN、PQ水平放置,两板间距为d、板长为l,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC与PQ在同一水平线上,顶点A与MN在同一水平线上,如图所示.一个质量为m、电量为+q的粒子沿两板中心线以初速度v0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB边从D点进入磁场,BD=AB,并垂直AC边射出(不计粒子的重力).求:
(1)两极板间电压;
(2)三角形区域内磁感应强度;
(3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB边射出,试求所加磁场的磁感应强度最小值.
匀强磁场分布在半径为R的圆内,磁感应强度为B,CD是圆的直径。质量为m、电量为q的带正电粒子,由静止开始经加速电场加速后,沿着与直径CD平行且相距0.6R的直线从A点进入磁场,如图所示。若带电粒子在磁场中运动的时间是。求加速电场的加速电压。
一个负离子的质量为m,电量大小为q,以速度v0垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图10-25所示。磁感应强度B方向与离子的初速度方向垂直,并垂直于纸面向里。如果离子进入磁场后经过时间t到这位置P,证明:直线OP与离子入射方向之间的夹角θ跟t的关系是
如图所示,A是一块水平放置得铅板的截面,其厚度为d。MM´和NN´是一重力可忽略不计,质量为m,带电量为q的粒子在匀强磁场中的运动轨迹。粒子的运动轨迹与磁场方向垂直,并且粒子垂直穿过铅板。轨迹MM´的半径为r,轨迹NN´的半径为R,且R > r。求:
(1)粒子穿过铅板时的运动方向(回答向上或向下)
(2)粒子带何电荷。
(3)粒子穿过铅板时所受的平均阻力。
如图所示,竖直放置的正对平行金属板长L,板间距离也为L,两板间有场强为E的匀强电场(电场仅限于两板之间),右极板的下端刚好处在一有界匀强磁场的边界(虚线所示)上,该边界与水平成45°夹角,边界线以石有垂直纸面向里的匀强磁场。一质量为m、电量为e的电子在左侧金属板的中点从静止开始,在电场力作用下加速向右运动,穿过右极板中心小孔后,进入匀强磁场。
求:(1)从电子开始运动到进入匀强磁场所需的时间;
(2)匀强磁场的磁感应强度B应满足什么条件,才能保证电子从磁场出来后,还能穿越平行金属板间的电场区域。
如图所示,轻绳绕过轻滑轮连接着边长为L的正方形导线框A1和物块A2,线框A1的电阻为R,质量为M,物块A2的质量为m(M>m),两匀强磁场区域I、II的高度也为L,磁感应强度均为B,方向水平与线框平面垂直。线框ab边距磁场边界高度为h。开始时各段绳都处于伸直状态,把它们由静止释放,ab边刚穿过两磁场的分界线CC/进入磁场II时线框做匀速运动。求:
(1)ab边刚进入磁场I时线框A1的速度v1;
(2)ab边进入磁场II后线框A1其重力的功率P;
(3)从ab边刚进入磁场II到ab边刚穿出磁场II的过程中,线框中产生的焦耳热Q。
如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x轴成30o角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )
A.1:2 | B.2:1 | C. | D.1:1 |
如图,一匀强磁场磁感应强度为B,方向向里,其边界是半径为R的圆。AB为圆的一直径。在A点有一粒子源向圆平面内的各个方向发射质量m、电量+q的粒子,粒子重力不计。(结果保留2位有效数字)
(1)如果有一带电粒子以垂直于磁场的速度,沿半径方向进入圆形区域的磁场中。试证明此粒子一定沿半径方向射出磁场。
(2)如果磁场的边界是弹性边界,粒子沿半径方向射入磁场,粒子的速度大小满足什么条件,可使粒子在磁场中绕行一周回到出发点,并求离子运动的时间。
(3)如果R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为106m/s,比荷为108c/kg的粒子.试画出在磁场中运动时间最长的粒子的运动轨迹并求此粒子的运动的时间。
(4)在(3)中,如果粒子的初速度大小均为3×105米/秒,求磁场中有粒子到达的面积.
如图所示,某放射源A中均匀地向外辐射出平行于y轴的速度一定的α粒子,粒子质量为m,电荷量为q。为测定其从放射源飞出的速度大小,现让α粒子先经过一个磁感应强度为B、区域为半圆形的匀强磁场,经该磁场偏转后,它恰好能够沿x轴进入右侧的平行板电容器,并打到置于板N的荧光屏上出现亮点。当触头P从右端向左移动到滑动变阻器的中央位置时,通过显微镜头Q看到屏上的亮点恰好能消失。已知电源电动势为E,内阻为r0,滑动变阻器的总电阻R0=2 r0,求:
(1)α粒子从放射源飞出速度的大小;
(2)满足题意的α粒子在磁场中运动的总时间t;
(3)该半圆形磁场区域的半径R。
如图所示,有一电子束从a点处以一定的水平速度飞向竖直放置的荧光屏,并垂直击中荧光屏上的b点.已知电子的质量为m,电量为e.
若在电子束运行途中加一个仅存在于半径为r的圆形区域内的匀强磁场,磁感应强度为B,方向垂直纸面向里,圆心O在点a、b连线上,点O距荧光屏的距离为L。
(1)为使电子束仍击中荧光屏上的点b,可加一场强为E的匀强电场.指出此匀强电场的方向和范围,并求出电子束的速度。
(2)现撤去电场,电子束仍以原速度大小沿水平方向从a点发射,试求出此时侧移量y
的表达式。
如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离处,有一个点状的放射源S,它向各个方向发射粒子,粒子的速度都是,已知粒子的电荷与质量之比,现只考虑在图纸平面中运动的粒子,求ab上被粒子打中的区域的长度。
在水平面上有一沿y轴放置的长为L=1m的细玻璃管,在管底有光滑绝缘的带正电的小球.在第一象限中存在磁感应强度为B=1T的匀强磁场,方向如图所示。已知管沿x轴以v=1m/s的速度匀速向右运动,带电小球的荷质比为,不计小球的重力。求:
(1)带电小球从管底到飞出管口时所用的时间是多少?
(2)带电小球离开磁场时的位置到坐标原点的距离是多少?
(3)带电小球从刚离开管口后到离开磁场时所用的时间是多少?
核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4×c/㎏,中空区域内带电粒子具有各个方向的速度。试计算
(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。
(2)所有粒子不能穿越磁场的最大速度。