如图,在平面直角坐标系 x O y 中,抛物线 E : y = ﹣ ( x ﹣ m ) 2 + 2 m 2 ( m < 0 ) 的顶点 P 在抛物线 F : y = a x 2 上,直线 x = t 与抛物线 E , F 分别交于点 A , B .
(1)求 a 的值;
(2)将 A , B 的纵坐标分别记为 y A , y B ,设 s = y A ﹣ y B ,若 s 的最大值为 4 ,则 m 的值是多少?
(3) Q 是 x 轴的正半轴上一点,且 P Q 的中点 M 恰好在抛物线 F 上.试探究:此时无论 m 为何负值,在 y 轴的负半轴上是否存在定点 G ,使 ∠ P Q G 总为直角?若存在,请求出点 G 的坐标;若不存在,请说明理由.
(本小题满分10分) 已知甲、乙两种矿石中均含有金属A,其含量及每吨原料的购买单价如下表所示:
已知用甲矿石提取每千克金属A要排放废气1吨,用乙矿石提取每千克金属A要排放废气0 5吨,若某厂要提取金属A20千克,并要求废气排放不超过16吨,问:该厂购买这两种原料的费用最少是多少万元?
(本小题满分10分) 有一学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中E组所在的扇形的圆心角为144° 被抽取的体育测试成绩频数分布表
根据上面的图表提供的信息,回答下列问题: (1)计算频数分布表中a与b的值; (2)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数) (3)小敏测得扇形统计图的半径为5,将扇形统计图的A,B,C区域块剪下来,剩余部分卷成圆锥体(不算重合部分),则圆锥体的高为多少?
(本小题满分8分)某一空间图形的三视图如右图所示, 其中主视图:半径为1的半圆以及高为1的矩形; 左视图:半径为1的圆以及高为1的矩形; 俯视图:半径为1的圆 求此图形的体积
已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处. (1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA. ①求证:△OCP∽△PDA; ②若△OCP与△PDA的面积比为1:4,求边AB的长; (2)若图1中的点P恰好是CD边的中点,求∠OAB的度数; (3)如图2,在(1)的条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.
二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H. (1)求二次函数的解析式; (2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP; (3)当△FPM是等边三角形时,求P点的坐标.