已知在平面直角坐标系中点 A a , b ,点 B a , 0 ,且满足 2 a - b + ( a - 4 ) 2 = 0 .
(1)求点 A ,点 B 的坐标;
(2)已知点 C 0 , b ,点 P 从 B 点出发,沿 x 轴负方向以 1 个单位每秒的速度移动.同时点 Q 从 C 点出发,沿 y 轴负方向以 2 个单位每秒的速度移动,某一时刻,如图②所示,且 S 阴 = 1 2 S 四边形 OCAB .求点 P 移动的时间?
(3)在(2)的条件下, AQ 交 x 轴于 M ,作 ∠ ACO , ∠ AMB 的角平分线交于点 N ,如图③所示,判断 ∠ N - ∠ APB - ∠ PAQ ∠ AQC 是否为定值,若是定值求其值;若不是定值,请说明理由.
如图,将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF,∠ABC=α=60°,BF=AF. (1)求证:DA∥BC; (2)猜想线段DF、AF的数量关系,并证明你的猜想.
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件 (1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大; (3)如果该文具的销售单价高于进价且不超过30元,请你计算最大利润.
如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D. (1)求证:CD是⊙O的切线; (2)若CD=2,求⊙O的半径.
已知二次函数y=x2-2mx+m2+3(m是常数). (1)求证:不论m为何值,该函数的图象与x轴没有公共点; (2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1. (1)画出旋转后的A1OB1; (2)直接写出点A1、B1的坐标分别为 、 ; (3)试求A1OB1的面积.