已知在平面直角坐标系中点 A a , b ,点 B a , 0 ,且满足 2 a - b + ( a - 4 ) 2 = 0 .
(1)求点 A ,点 B 的坐标;
(2)已知点 C 0 , b ,点 P 从 B 点出发,沿 x 轴负方向以 1 个单位每秒的速度移动.同时点 Q 从 C 点出发,沿 y 轴负方向以 2 个单位每秒的速度移动,某一时刻,如图②所示,且 S 阴 = 1 2 S 四边形 OCAB .求点 P 移动的时间?
(3)在(2)的条件下, AQ 交 x 轴于 M ,作 ∠ ACO , ∠ AMB 的角平分线交于点 N ,如图③所示,判断 ∠ N - ∠ APB - ∠ PAQ ∠ AQC 是否为定值,若是定值求其值;若不是定值,请说明理由.
(每小题7分,共14分) (1)计算:︱一2 ︱+()-1×(π一)0一+(一1) 2; (2)解方程:x—1=.
已知A(-3,6)、C(-3,2),点B在点C的左侧,以A、B、C为顶点构成直角三角形,∠C=90,BC=4. (1)作出△ABC关于坐标原点O的中心对称图形△DEF(0.5cm为1个长度单位);(注:不写作法) (2)求AD的长。
如右图,正方形ABCD,E是CD上的一点,△ADE旋转后能与△ABF重合,请指出旋转中心和旋转角,并判断△AEF的形状。
如右图,△ABC中,AB=AC,绕某点在△ABC所在平面内旋转△ABC,旋转所得图形与原图形一起恰好成一菱形。画出旋转得到的图形,指出旋转中心、旋转角。(不写作法)
列一元二次方程解下列应用题(每小题6分,共18分) (1)已知两个正方形的面积之和为89,周长之差为12, 求这两个正方形的边长。 (2)有一人患了流感,经两轮传染后共有144人患了这种疾病,每轮传染中平均一个人传染了几人? (3)据有关部门统计,我省农作物秸秆资源巨大,但合理利用量十分有限,2009年利用率只有30℅,大部分秸秆被直接焚烧,假定我省产生的农作物秸秆总量不变,且合理利用量的增长率相同,要使2011年的利用率提高到60℅,求每年的增长率。(可能用到的数据:)