设 S 1 = 1 + 1 1 2 + 1 2 2 , S 2 = 1 + 1 2 2 + 1 3 2 , S 3 = 1 + 1 3 2 + 1 4 2 , ⋯ , S n = 1 + 1 n 2 + 1 ( n + 1 ) 2 ,求 S 1 + S 2 + ⋯ + S n 的值.(用含 n 的代数式表示,其中 n 为正整数)
如图,点A、B、C分别是⊙O上的点,∠B=60°, CD是⊙O的直径,P是CD延长线上的点,且AP=AC. (1)求证:AP是⊙O的切线; (2)若AC= 3,求PD的长.
一元二次方程. (1)若方程有两个实数根,求m的范围. (2)设方程两实根为,且,求m.
(1)解方程: (2)解方程:
(1)化简: (2)计算:;
(本题12分)如图甲,在平面直角坐标系中,直线y=x+8分别交x轴、y轴于点A、B,⊙O的半径为2个单位长度.点P为直线y=x+8上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,且PC⊥PD. (1)试说明四边形OCPD的形状(要有证明过程); (2)求点P的坐标; (3)如图乙,若直线y=x+b将⊙O的圆周分成两段弧长之比为1:3,请直接写出b的值 (4)向右移动⊙O(圆心O始终保持在x轴上),试求出当⊙O与直线y=x+8有交点时圆心O的横坐标m的取值范围。