已知正方形 ABCD 中, ∠ MAN = 45 ∘ , ∠ MAN 绕点 A 顺时针旋转,它的两边分别交 CB , DC (或它们的延长线)于点 M , N .当 ∠ MAN 绕点 A 旋转得到 BM = DN 时(如图1),易证 BM + DN = MN .
(1)当 ∠ MAN 绕点 A 旋转到 BM ≠ DN 时(如图2),线段 BM , DN 和 MN 之间有怎样的数量关系?写出猜想,并加以证明;
(2)当 ∠ MAN 绕点 A 旋转到如图3的位置时,线段 BM , DN 和 MN 之间又有怎样的数量关系?写出你的猜想,并说明理由.
某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种圭特产,且必须装满.根据下表提供的信息,解答以下问题:
(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.
如图,在水平面上放置一圆锥,在圆锥顶端斜靠着一根木棒(木棒的厚度可忽略不计)小明为了探究这个问题,将此情景画在了草稿纸上(如右图所示):运动过程:木棒顶端从A点开始沿圆锥的母线下滑,速度为(木棒下滑为匀速)已知木棒与水平地面的夹角为,随木棒的下滑而不断减小。的最大值为30°,若木棒长为。问:当木棒顶端从A滑到B这个过程中,木棒末端的速度为多少?
为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m) (下列数据提供参考:20°=0.3420,20°=0.9397,20°=0.3640)
如图,⊙O的直径6cm,是延长线上的一点,过点作⊙O的切线,切点为,连接。(1)若30°,求PC的长;(2)若点在的延长线上运动,的平分线交于点,你认为∠的大小是否发生变化?若变化,请说明理由;若不变,求出∠的值。
如图所示,一段街道的两边缘所在直线分别为AB、PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);(2)已知:MN=20m,MD=8m,PN=24m,求(1)中的点C到胜利街口的距离CM.