如图。(1)如图①以 △ ABC 的边 AB , AC 为边分别向外作正方形 ABDE 和正方形 ACFG ,连接 EG ,试判断 △ ABC 与 △ AEG 面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图②所示。小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是 a m 2 ,内圈的所有三角形的面积之和是 b m 2 ,这条小路一共占地多少 m 2 ?
(本题10分)在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH. (1)求证:AC⊥ED (2)求证:△ACD≌△ACE (3)请猜测CD与DH的数量关系,并证明
(本题8分) 某商店经营一种成本为每千克40美元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克, (1)针对这种水产品的销售情况,设销售单价定为x元(x>50),请用的x代数式表示月销售量,以及获得的利润. (2)当x取什么数时利润最大?最大利润是多少?
(本题8分)我区实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题: (1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D类男生有名; (2)将上面的条形统计图补充完整; (3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
(本题6分)先化简分式(﹣)÷,再在﹣3<x≤2中取一个合适的x,求出此时分式的值
(本小题满分12分) 如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,,反比例函数(k>0)在第一象限内的图象经过点A,与BC交于点F (1)若OA=10,求反比例函数解析式; (2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标; (3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO 是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由