在平面直角坐标系中, 抛物线+与直线交于A, B两点,点A在点B的左侧.(1)如图1,当时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线+ 与轴交于C,D两点(点C在点D的左侧).在直线上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时的值;若不存在,请说明理由.图1 图2
解方程(组): (1)4-3x=6-5x; (2); (3).
先化简,再求值:2m2-4m+1-2(m2+2m-),其中m=-1.
用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用) A方法:剪6个侧面; B方法:剪4个侧面和5个底面。 现有38张硬纸板,裁剪时x张用A方法,其余用B方法。 (1)用x的代数式分别表示裁剪出的侧面和底面的个数; (2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
已知:AB∥CD,∠B +∠D=,判断直线BC与ED的位置关系并请说明理由.
如图,O为直线AB上一点,OD平分∠AOC,∠DOE=.(1)若∠AOC=,求出∠BOD的的度数;(2)试判断OE是否平分∠BOC,并说明理由.