如图甲,在 △ ABC 中, ∠ ACB = 90 ∘ , AC = 4 cm , BC = 3 cm ,如果点 P 由点 B 出发沿 BA 方向向点 A 匀速运动,同时点 Q 由点 A 出发沿 AC 方向向点 C 匀速运动,它们的速度均为 1 cm / s .连接 PQ ,设运动时间为 t s ( 0 < t < 4 ) ,解答下列问题:
(1)设 △ APQ 的面积为 S ,当 t 为何值时, S 取得最大值, S 的最大值是多少?
(2)如图乙,连接 PC ,将 △ PQC 沿 QC 翻折,得到四边形 PQ P ' C ,当四边形 PQ P ' C 为菱形时,求 t 的值;
(3)当 t 为何值时, △ APQ 是等腰三角形?
图案设计:正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉 能组成轴对称或中心对称图案.下面是三种不同设计方案中的一部分,请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;把图③补成只是中心对称图形,并把中心标上字母P。(在你所设计的图案中用阴影部分和非阴影部分表示两种不同颜色的花卉。)
已知关于x的方程x 2-2(m+1)x+m2=0 (1)当m取何值时,方程有两个相等的实数根; (2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个根。
在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.求“两次取的小球的标号相同”的概率。请借助列表法或树形图说明理由。
解方程:
计算: