一场数学游戏在两个非常聪明的学生甲、乙之间进行.裁判先在黑板上写出下面的正整数 2 , 3 , 4 ⋯ 2006 ,然后随意擦去一个数.接下来由乙、甲两人轮流擦去其中的一个数(即乙先擦去其中的一个数,然后甲再擦去一个数,如此轮流下去),若最后剩下的两个数互质,则判甲胜;否则,判乙胜.
按照这种游戏规则,求甲获胜的概率(用具体的数字作答).
先化简,再求值:,其中,
因式分解:① ②
计算:① ②
已知菱形的对角线和相交于点,,,(1)菱形的对角线和具有怎样的位置关系?(2)若沿两条对角线把菱形剪开,分成四个三角形,利用这四个三角形可拼成一个可以证明勾股定理的图形.请你画出示意图,并证明勾股定理.(3)若,,求①菱形的边长和菱形的面积.(直接写出结论)②求菱形的高.(直接写出结论)
图形的操作过程(本题中四个矩形的水平方向的边长均为a,竖直方向的边长均b): ●在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);●在图2中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图3中,请你类似地画一条有两个折点的线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=__________,S2=__________,S3=__________.(3)联想与探索 如上图,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草场地面积是多少?并说明你的猜想是正确的.