在平面直角坐标系中, P ( a , b ) 是第一象限内一点,给出如下定义: k 1 = a b 和 k 2 = b a 两个值中的最大值叫做点 P 的“倾斜系数” k .
(1)求点 P ( 6 , 2 ) 的“倾斜系数” k 的值;
(2)①若点 P ( a , b ) 的“倾斜系数” k = 2 ,请写出 a 和 b 的数量关系,并说明理由;
②若点 P ( a , b ) 的“倾斜系数” k = 2 ,且 a + b = 3 ,求 O P 的长;
(3)如图,边长为 2 的正方形 A B C D 沿直线 A C : y = x 运动, P ( a , b ) 是正方形 A B C D 上任意一点,且点 P 的“倾斜系数” k < 3 ,请直接写出 a 的取值范围.
如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△EFG的面积为Scm2。 (1)当=1s时,S的值是多少?(2) 当时,点E、F、G分别在边AB、BC、CD上移动,用含t的代数式表示S;当时,点E在边AB上移动,点F、G都在边CD上移动,用含t的代数式表示S.(3)若点F在矩形的边BC上移动,当为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由
某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查发现,售价在40元至60元范围内,台灯的售价每上涨1元,其销售量就将减少10个。为了实现平均每月10000元的销售利润,这种台灯应涨价多少元?这时应购进台灯多少个?
如图,已知左右并排的两棵树高分别是AB=8m,CD=12m,两树的根部的距离BD=5m,小明眼睛离地面的高度EF为1.6m,他沿着正对这两棵树的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?
如图,在矩形中,对角线与相交于点,过点作∥,过点作∥,两线相交于点。求证:四边形是菱形.
已知,如图,AB和DE是直立在地面上的两根立柱AB=6m,某一时刻AB在太阳光下的投影BC=3m。(1)请你在图中画出此时DE在太阳光下的投影EF;(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF长为6m,请你计算DE的长。