如图1,在矩形 A B C D 中, A B = 4 , A D = 3 ,点 O 是边 A B 上一个动点(不与点 A 重合),连接 E G O D ,将 △ O A D 沿 O D 折叠,得到 △ O E D ;再以 O 为圆心, O A 的长为半径作半圆,交射线 A B 于 G ,连接 A E 并延长交射线 B C 于 F ,连接,设 O A = x .
(1)求证: D E 是半圆 O 的切线:
(2)当点 E 落在 B D 上时,求 x 的值;
(3)当点 E 落在 B D 下方时,设 △ A G E 与 △ A F B 面积的比值为 y ,确定 y 与 x 之间的函数关系式;
(4)直接写出:当半圆 O 与 △ B C D 的边有两个交点时, x 的取值范围.
解方程 (1) (2) (3)4-x=3(2-x) (4)
先化简,再求值:,其中。
如图,在平面直角坐标系中,点A、B的坐标分别为A(-4,0),B(0,3)。 (1)求AB的长; (2)过点B作BC⊥AB,交轴于点C,求点C的坐标; (3)在(2)的条件下,如果P、Q分别是AB和AC上的动点,连结PQ,设AP=CQ=m,问是否存在这样的使得△APQ与△ABC相似,若存在,请求出的值;若不存在,请说明理由。
某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?
如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC. (1)试说明:△ABD∽△DCB; (2)若BD=7,AD=5,求BC的长.